
Probabilistic Method and Random Graphs
Lecture 9. Random Graphs-Part II1

Xingwu Liu

Institute of Computing Technology

Chinese Academy of Sciences, Beijing, China

1Mainly based on Lecture 13 of Ryan O’Donnell’s lecture notes of
Probability and Computing. The application is based on Chapter 5.6 in
Probability and Computing.

1 / 1

Questions, comments, or suggestions?

2 / 1

Recap of Lecture 8

Random graphs are motivated by modeling gigantic graphs

Two views of random graphs

Probability space over graphs

Equal probability on all n-graphs: Gn
Equal probability on all n-graphs with m edges: Gn,m
Hard to compute statistics

Generated by stochastic processes

Play a super dice
Determine each edge by independently tossing a coin: Gn,p

Gn, 1
2
∼ Gn, easy to compute statistics

A spectrum of probability spaces on the same sample space

Independently randomly sample m edges: Gn,m

3 / 1

Recap of Lecture 8

Decoupling dependency in Gn,m
Gn,m ∼ (Gn,p|there are m edges)
A paradigm of handling Gn,m

Properties of Gn,p
Homogeneous in degree and dense when p is constant
Impractical: typical real networks are heterogeneous&sparse

4 / 1

A tentative model for sparse graphs

When the graph has constant average degree

Consider a social network with average degree 150 (Dunbar’s #).
Let p = 150

n . Does it work?

Too concentrated in degree

Di ∼ Bin(n− 1, 150/n) ≈ Poi(150).
Chernoff + Union bound implies concentration around 150.
e.g. Pr(Di ≤ 25) ≤ 25 e−15015025

25! ≈ 25× 10−36 < 10−34.

5 / 1

Random graphs with a given degree sequence

Degree sequence of an n-vertex graph G

n0, n1, ...nn are integers.
ni = number of vertices in G with degree exactly i.∑

ni = n,
∑

i ∗ ni = 2m

Random graphs with specified degree sequence

Introduced by Bela Bollobas around 1980.
Produced by a random process:
Step 1. Decide what degree each vertex will have.
Step 2. Blow each vertex up into a group of ‘mini-vertices’.
Step 3. Uniformly randomly, perfectly match these vertices.
Step 4. Merge each group into one vertex.
Finally, fix multiple edges and self-loops if you like

6 / 1

Example

n = 5, n0 = 0, n1 = 1, n2 = 2, n3 = 0, n4 = 1, n5 = 1

7 / 1

Other random graph models

Practical graphs are formed organically by “randomish” processes.

Preferential attachment model
Propsed by Barabasi&Albert in 1999
Scale-free network
First by Scottish statistician Udny Yule

in 1925 to study plant evolution

Rewired ring model
Propsed by Watts&Strogatz in 1998
Small world network

8 / 1

Threshold phenomena

Threshold: the most striking phenomenon of random graphs.
Extensively studied in Erdös-Rényi model Gn,p.

Threshold functions

Given f(n) and event E, if E does not happen on Gn,o(f) whp but
happens on Gn,w(f) whp, f(n) is a threshold function of E.

Sharp threshold functions

Given f(n) and event E, if E does not happen on Gn,cf whp for
any c < 1 but happens whp for any c > 1, f(n) is a sharp
threshold function of E.

9 / 1

Example

f(n) = lnn
n is a sharp threshold function for connectivity.

f(n) = 1
n is a sharp threshold function for giant component.

f(n) = 1
n is a threshold function for cycles.

10 / 1

Application: Hamiltonian cycles in random graphs

Objective

Find a Hamiltonian cycle if it exists in a given graph.
NP-complete, but ...
Efficiently solvable w.h.p. for Gn,p, when p is big enough.

How?

A simple algorithm (use adjacency list model):

Initialize the path to be a vertex.

repeatedly use an unused edge to extend or rotate the path
until a Hamiltonian cycle is obtained or a failure is reached.

Performance

Running time ≤ #edges ⇒ inaccurate.
This does not matter if accurate w.h.p.
Challenge: hard to analyze, due to dependency.

11 / 1

A closer look at the algorithm

Essentially, extending or rotating is to sample a vertex.If an unseen
vertex is sampled, add it to the path. When all vertices are seen, a
Hamiltonian path is obtained, and almost end.

Familiar? Yes! Coupon collecting.
If we can modify the algorithm so that sampling at every step is
uniformly random over all vertices, coupon collector problem
results guarantee to find a Hamiltonian path in polynomial time. It
is not so difficult to close the path.

Improvements

Every step follows either unseen or seen edges, or reverse the
path, with certain probability.

Independent adjacency list (unused edges accessed by query),
simplifying probabilistic analysis of random graphs

12 / 1

Modified Hamiltonian Cycle Algorithm

Under the independent adjacency list model

Start with a randomly chosen vertex

Repeat:

reverse the path with probability 1
n

sample a used edge and rotate with probability |used edges|
n

otherwise, sample an unused edge (and rotate when necessary)

Until a Hamiltonian cycle is found or FAIL(no unused edges)

An important fact

Let Vt be the head of the path after the t-th step. If the
unused edges list of the head at time t− 1 is non-empty,
Pr(Vt = ut|Vt−1 = ut−1, ...V0 = u0) = 1

n for ∀ui.

Coupon collector results apply: If no unused edges lists are
exhausted, a Hamiltonian path is found in O(n lnn) iterations
w.h.p., and likewise for closing the path.

13 / 1

Performance and Efficiency

Theorem

If in the independent adjacency list model, each edge (u, v) appear
on u’s list with probability q ≥ 20 lnn

n , The algorithm finds a
Hamiltonian cycle in O(n lnn) iterations with probability 1−O(1

n).

Basic idea of the proof

Fail ⇒
E1: no unused-edges list is exhausted in 3n lnn steps but fail.

E1a: Fail to find a Hamiltonian path in 2n lnn steps.
E1b: The Hamiltonian path does not get closed in n lnn steps.

E2: an unused-edges list is exhausted in 3n lnn steps.

E2a: ≥ 9 lnn unused edges of a vertex are removed in 3n lnn
steps.
E2b: a vertex initially has < 10 lnn unused edges.

14 / 1

Proof: E1a and E1b have low probability

E1a: Fail to find a Hamiltonian path in 2n lnn steps

The probability that a specific vertex is not reached in 2n lnn
steps is (1− 1/n)2n lnn ≤ e−2 lnn = n−2.
By the union bound, Pr(E1a) ≤ n−1.

E1b: The Hamiltonian path does not get closed in n lnn steps

Pr(close the path at a specific step) = n−1.
⇒ Pr(E1b) = (1− 1/n)n lnn ≤ e− lnn = n−1.

15 / 1

Proof: E2a and E2b have low probability

E2a: ≥ 9 lnn unused edges of a vertex are removed in 3n lnn steps

The number of edges removed from a vertex v’s unused edges list
≤ the number X of times that v is the head.
X ∼ Bin(3n lnn, n−1)⇒ Pr(X ≥ 9 lnn) ≤ (e2/27)3 lnn ≤ n−2.
By the union bound, Pr(E2a) ≤ n−1.

E2b: a vertex initially has < 10 lnn unused edges

Let Y be the number of initial unused edges of a specific vertex.
E[Y] ≥ (n− 1)q ≥ 20(n− 1) lnn/n ≥ 19 lnn asymptotically.
Chernoff bounds ⇒ Pr(Y ≤ 10 lnn) ≤ e−19(9/19)2 lnn/2 ≤ n−2.
Union bound ⇒ Pr(E2b) ≤ n−1.

Altogether

Pr(fail) ≤ Pr(E1a) + Pr(E1b) + Pr(E2a) + Pr(E2b) ≤ 4
n .

16 / 1

The algorithm on random graph Gn,p

Corollary

The modified algorithm finds a Hamiltonian cycle on random graph
Gn,p with probability 1−O(1

n) if p ≥ 40 lnn
n .

Proof

Define q ∈ [0, 1] be such that p = 2q − q2.
We have two facts:

The independent adjacency list model with parameter q is
equivalent to Gn,p.

q ≥ p
2 ≥ 20 lnn

n .

17 / 1

