Probabilistic Method and Random Graphs Lecture 8. Random Graphs¹

Xingwu Liu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

¹Based on Lecture 13 of Ryan O'Donnell's lecture notes of *Probability and Computing.* Questions, comments, or suggestions?

Poisson approximation theorem

$$\mathbb{E}\left[f\left(X_{1}^{(m)},...X_{n}^{(m)}\right)\right] \leq e\sqrt{m}\mathbb{E}\left[f\left(Y_{1}^{(m)},...Y_{n}^{(m)}\right)\right]$$

• $\Pr\left(\mathcal{E}\left(X_{1}^{(m)},...X_{n}^{(m)}\right)\right) \leq e\sqrt{m}\Pr\left(\mathcal{E}\left(Y_{1}^{(m)},...Y_{n}^{(m)}\right)\right)$
• $e\sqrt{m}$ can be improved to 2, if f is monotonic in m

Applications

- Max load: $L(n,n) > \frac{\ln n}{\ln \ln n}$ with high probability
- Max load: $L(n,n) = \Theta\left(\frac{\ln n}{\ln \ln n}\right)$ with high probability

Hashing

- Hash table: accurate, time-efficient, space-inefficient
- Info. fingerprint: small error, time-inefficient, space-efficient
- Bloom filter: small error, time-efficient, more space-efficient

Туре	Space	Time	Error rate
Hash table	$\geq 256m$	Constant	0
Information fingerprint	$m \lg_2 \frac{m}{c}$	$\ln m$	c
Bloom filter	$m \frac{-\ln \tilde{c}}{\ln 2}$	Constant	c

Motivation of studying random graphs

Gigantic graphs are ubiquitous

- Web link network: Teras of vertices and edges
- Phone network: Billions of vertices and edges
- Facebook user network: Billions of vertices and edges
- Human neural networks: 86 Billion vertices, $10^{14} 10^{15}$ edges
- Network of Twitter users, wiki pages ...: size \geq millions

What do they look like?

- Impossible to draw and look
- What's meant by 'look like'?

Examples of the statistics

- How dense are the graphs, m = O(n) or $\Theta(n^2)$?
- Is it connected?
 - If not connected, how big are the components?
 - If connected, diameter
- What's the degree distribution?
- What's the girth? How many triangles are there?

Feasible for a single graph?

Yes, but not of the style of a **scientist**

Scientists' concerns

Interconnection

- Do the features appear inevitably or accidentally?
- Do various gigantic graphs have common statistical features?
- What accounts for the statistical difference between them?

Prediction

- What will a newly created gigantic graph be like?
- How is one statistical feature, given some others?

Exploitation (algorithmic)

- How do the features help algorithms? Say, routing, marketing
- What properties of the graphs determine the performance?

Key to solution

Modelling gigantic graphs: random graphs are a good candidate

Intuition: stochastic experiments

- God plays a dice, resulting in a random number from 1 to 6
- God plays an amazing toy, resulting in a random graph
 - Amazing toy: a huge dice with a graph on each facet

Axiomatic definition of random graphs

Random graph with n vertices

- Sample space: all graphs on n vertices
- Events: every subset of the sample space is an event
- Probability function: any normalized non-negative function on the sample space

 \mathcal{G}_n : uniform random graph on n vertices

The probability function has equal value on all graphs

Simple questions on \mathcal{G}_n

Random variable $X: G \mapsto$ the number of edges of G

- What's $\mathbb{E}[X]$?
- What's Var[X]?

Tough? Not easy, at least. Big names appeared!

$\mathcal{G}_{n,p}$, Erdös-Rényi model

 $\begin{array}{l} \text{Stochastic process:} \\ \text{Input: } n \text{ and } p \in [0,1] \\ \text{Output: indicators } E_{ij}, 1 \leq i < j \leq n \\ \text{for } i = 1 \cdot \cdot n \\ \text{for } j = i + 1 \cdot \cdot n \\ E_{ij} \leftarrow \text{Bernoulli}(p) \end{array}$

In one word: $\mathcal{G}_{n,p}$ is an *n*-vertex graph the existence of each of whose edges is independently determined by tossing a *p*-coin.

Proposed in 1959 by Gilbert (1923-2013, American coding theorist and mathematician). Motivated by phone networks.

Erdös&Rényi get the naming credit due to extensive work

Uniform distribution over n-vertex graphs

 $\mathcal{G}_{n,\frac{1}{2}}\sim \mathcal{G}_n,$ the axiomatic definition What does it look like?

The number of edges

In $\mathcal{G}_{n,\frac{1}{2}}$, the number of edges has $\operatorname{Bin}\left(\binom{n}{2},\frac{1}{2}\right)$ distribution. Expectation: $\frac{n(n-1)}{4}$. Variance: $\frac{n(n-1)}{8}$. The expected degree of vertex i: $\frac{n-1}{2}$

Concentration theorem

In $\mathcal{G}_{n+1,\frac{1}{2}},$ all vertices have degree between $\frac{n}{2}-\sqrt{n\ln n}$ and $\frac{n}{2}+\sqrt{n\ln n}$ w.h.p.

Proof: Hoeffding's Inequality + Union Bound

Let D_i be the degree of vertex *i*. $\Pr(D_i > \frac{n}{2} + \sqrt{n \ln n}) \le e^{-2(\sqrt{n \ln n})^2/n} = n^{-2}.$ Likewise, $\Pr(D_i < \frac{n}{2} - \sqrt{n \ln n}) \le n^{-2}$. So, $\Pr\left(\left|D_i - \frac{n}{2}\right| \ge \sqrt{n \ln n}\right) \le \frac{2}{n^2},$ $\Pr\left(\bigcup_{i=1}^{n+1} \left(\left| D_i - \frac{n}{2} \right| \ge \sqrt{n \ln n} \right) \right) \le \frac{2(n+1)}{n^2} = O(\frac{1}{n}),$ $\Pr\left(\bigcap_{i=1}^{n+1} \left(\left| D_i - \frac{n}{2} \right| < \sqrt{n \ln n} \right) \right) \ge 1 - O(\frac{1}{n}).$

12/18

Another generative model of random graphs

$\mathcal{G}_{n,m}$

Randomly *independently* assign m edges among n vertices. Equiv: uniform distribution over all n-vertex m-edge graphs

Proposed by Erdös&Rényi in 1959, and independently by Austin, Fagen, Penney and Riordan in 1959.Hard to study, due to dependency among edges.Can we decouple the edges? Yes, sort of.

Decoupling the edges

 $\mathcal{G}_{n,m} \sim \mathcal{G}_{n,p} | (m \text{ edges exist}), \text{ for any } p \in (0,1).$ Recall the Poisson Approximation Theorem

Both are called Erdös-Rényi model. $\mathcal{G}_{n,p}$ is more popular.

Probability of having isolated vertices

In random graph $\mathcal{G}_{n,m}$ with $m = \frac{n \ln n + cn}{2}$, the probability that there is an isolated vertex converges to $1 - e^{-e^{-c}}$.

Proof (By myself)

Basically, follow the proof of the theorem about coupon collecting. It is reduced to $\mathcal{G}_{n,p}$ with $p = \frac{\ln n + c}{n}$.

Problem reduction

In $\mathcal{G}_{n,p}$ with $p = \frac{\ln n + c}{n}$, the probability that there is an isolated vertex converges to $1 - e^{-e^{-c}}$.

Proof

$$\begin{split} E_i: & \text{the event that vertex } v_i \text{ is isolated in } \mathcal{G}_{n,p}. \\ E: & \text{the event that at least one vertex is isolated in } \mathcal{G}_{n,p}. \\ & \Pr(E) = \Pr(\cup_{i=1}^n E_i) \\ & = -\sum_{k=1}^n (-1)^k \sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq n} \Pr(\cap_{j=1}^k E_{i_j}). \end{split}$$

By Bonferroni inequalities, $\Pr(E) \leq -\sum_{k=1}^{l} (-1)^k \sum_{1 \leq i_1 < \ldots < i_k \leq n} \Pr(\cap_{j=1}^k E_{i_j}), \text{ for odd } l.$

$$\Pr(\bigcap_{j=1}^{k} E_{i_j}) = (1-p)^{(n-k)k + \frac{k(k-1)}{2}} = (1-p)^{nk - \frac{k(k+1)}{2}}.$$

$$\Pr(E) \le -\sum_{k=1}^{l} (-1)^k \binom{n}{k} (1-p)^{nk - \frac{k(k+1)}{2}}, \text{ for odd } l$$

$$\binom{n}{k} (1-p)^{nk-\frac{k(k+1)}{2}} > \frac{(n-k)^k}{k!} (1-p)^{nk-\frac{k(k+1)}{2}} \stackrel{n \to \infty}{=} \frac{e^{-ck}}{k!} .$$

$$\binom{n}{k} (1-p)^{nk-\frac{k(k+1)}{2}} < \frac{n^k}{k!} (1-p)^{nk-\frac{k(k+1)}{2}} \stackrel{n \to \infty}{=} \frac{e^{-ck}}{k!}$$

15/18

For odd l

$$\overline{\lim}_{n \to \infty} \Pr(E) \le -\sum_{k=1}^{l} \frac{(-e^{-c})^k}{k!} = 1 - \sum_{k=0}^{l} \frac{(-e^{-c})^k}{k!}$$

For even l, likewise

$$\underline{\lim}_{n \to \infty} \Pr(E) \ge -\sum_{k=1}^{l} \frac{(-e^{-c})^k}{k!} = 1 - \sum_{k=0}^{l} \frac{(-e^{-c})^k}{k!}$$

Altogether

Let
$$l$$
 go to infinity. We have
 $\underline{\lim}_{n\to\infty} \Pr(E) = \overline{\lim}_{n\to\infty} \Pr(E) = 1 - e^{-e^{-c}}$
So, $\lim_{n\to\infty} \Pr(E) = 1 - e^{-e^{-c}}$

<ロト < 回 ト < 画 ト < 画 ト < 画 ト < 画 ト 三 の Q (~ 16/18

Reflection on $\mathcal{G}_{n,p}$

Homogeneity in degree

Degree of each vertex is Bin(n-1, p). Highly concentrated, as proven

Dense for constant p

 $m=\Theta(n^2)$ whp. Billions of vertices with zeta edges, too dense

Unfit for real-world networks

Heterogeneous in degree distribution. Sort of sparse

Remark

 $\mathcal{G}_{n,p}$ -type randomness does appear in big graphs

Szemerédi Regularity Lemma

Tool in extremal graph theory by Endre Szemerédi in 1970's

Hungarian-American (1940-) Doctor vs Mathematician Gelfond vs Gelfand

Szemerédi's Regularity Lemma

 $\forall \epsilon, m > 0, \exists M > m$ such that any graph G with at least M vertices has an ϵ -regular k-partition, where $\exists m \leq k \leq M$.

Remark

Every large enough graph can be partitioned into a bounded number of parts which pairwise are like random graphs.

