
Probabilistic Method and Random Graphs
Lecture 8. Random Graphs1

Xingwu Liu

Institute of Computing Technology

Chinese Academy of Sciences, Beijing, China

1Based on Lecture 13 of Ryan O’Donnell’s lecture notes of Probability and
Computing.

1 / 18



Questions, comments, or suggestions?
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A recap of Lecture 7

Poisson approximation theorem
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Applications

Max load: L(n, n) > lnn
ln lnn with high probability

Max load: L(n, n) = Θ
(

lnn
ln lnn

)
with high probability
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A recap of Lecture 7

Hashing

Hash table: accurate, time-efficient, space-inefficient

Info. fingerprint: small error, time-inefficient, space-efficient

Bloom filter: small error, time-efficient, more space-efficient

Type Space Time Error rate

Hash table ≥ 256m Constant 0
Information fingerprint m lg2

m
c lnm c

Bloom filter m− ln c
ln 2 Constant c
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Motivation of studying random graphs

Gigantic graphs are ubiquitous

Web link network: Teras of vertices and edges

Phone network: Billions of vertices and edges

Facebook user network: Billions of vertices and edges

Human neural networks: 86 Billion vertices, 1014 − 1015 edges

Network of Twitter users, wiki pages ...: size ≥ milllions

What do they look like?

Impossible to draw and look

What’s meant by ‘look like’?
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Looking through statistical lens

Examples of the statistics

How dense are the graphs, m = O(n) or Θ(n2)?

Is it connected?

If not connected, how big are the components?
If connected, diameter

What’s the degree distribution?

What’s the girth? How many triangles are there?

Feasible for a single graph?

Yes, but not of the
style of a scientist
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Scientists’ concerns

Interconnection

Do the features appear inevitably or accidentally?

Do various gigantic graphs have common statistical features?

What accounts for the statistical difference between them?

Prediction

What will a newly created gigantic graph be like?

How is one statistical feature, given some others?

Exploitation (algorithmic)

How do the features help algorithms? Say, routing, marketing

What properties of the graphs determine the performance?

Key to solution

Modelling gigantic graphs: random graphs are a good candidate
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Definition of random graphs

Intuition: stochastic experiments

God plays a dice, resulting in a random number from 1 to 6

God plays an amazing toy, resulting in a random graph

Amazing toy: a huge dice with a graph on each facet

Axiomatic definition of random graphs

Random graph with n vertices

Sample space: all graphs on n vertices

Events: every subset of the sample space is an event

Probability function: any normalized non-negative function on
the sample space
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An example

Gn: uniform random graph on n vertices

The probability function has equal value on all graphs

Simple questions on Gn
Random variable X : G 7→ the number of edges of G

What’s E[X]?

What’s V ar[X]?

Tough? Not easy, at least.
Big names appeared!
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A generative model of random graphs

Gn,p, Erdös-Rényi model

Stochastic process:
Input: n and p ∈ [0, 1]
Output: indicators Eij , 1 ≤ i < j ≤ n
for i = 1 · ·n

for j = i+ 1 · ·n
Eij ← Bernoulli(p)

In one word:
Gn,p is an n-vertex graph
the existence of each of
whose edges is
independently determined
by tossing a p-coin.

Proposed in 1959 by Gilbert (1923-2013, American coding theorist
and mathematician). Motivated by phone networks.

Erdös&Rényi get the naming credit due to extensive work
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An example: p = 1
2

Uniform distribution over n-vertex graphs

Gn, 1
2
∼ Gn, the axiomatic definition

What does it look like?

The number of edges

In Gn, 1
2

, the number of edges has Bin
((

n
2

)
, 12
)

distribution.

Expectation: n(n−1)
4 .

Variance: n(n−1)
8 .

The expected degree of vertex i: n−1
2
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Homogeneous degree distribution

Concentration theorem

In Gn+1, 1
2

, all vertices have degree between n
2 −
√
n lnn and

n
2 +
√
n lnn w.h.p.

Proof: Hoeffding’s Inequality + Union Bound

Let Di be the degree of vertex i.
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Another generative model of random graphs

Gn,m
Randomly independently assign m edges among n vertices.
Equiv: uniform distribution over all n-vertex m-edge graphs

Proposed by Erdös&Rényi in 1959, and
independently by Austin, Fagen, Penney and Riordan in 1959.

Hard to study, due to dependency among edges.
Can we decouple the edges? Yes, sort of.

Decoupling the edges

Gn,m ∼ Gn,p|(m edges exist), for any p ∈ (0, 1).
Recall the Poisson Approximation Theorem

Both are called Erdös-Rényi model.
Gn,p is more popular.
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Application of the decoupling

Probability of having isolated vertices

In random graph Gn,m with m = n lnn+cn
2 , the probability that

there is an isolated vertex converges to 1− e−e−c
.

Proof (By myself)

Basically, follow the proof of the theorem about coupon collecting.
It is reduced to Gn,p with p = lnn+c

n .

Problem reduction

In Gn,p with p = lnn+c
n , the probability that there is an isolated

vertex converges to 1− e−e−c
.

14 / 18



Proof

Ei: the event that vertex vi is isolated in Gn,p.
E: the event that at least one vertex is isolated in Gn,p.
Pr(E) = Pr(∪ni=1Ei)

= −
∑n

k=1(−1)k
∑

1≤i1<i2<...<ik≤n Pr(∩kj=1Eij ).

By Bonferroni inequalities,
Pr(E) ≤ −
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∑
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Continued proof

For odd l

limn→∞ Pr(E) ≤ −
∑l

k=1
(−e−c)k

k! = 1−
∑l

k=0
(−e−c)k

k!

For even l, likewise

limn→∞ Pr(E) ≥ −
∑l

k=1
(−e−c)k

k! = 1−
∑l

k=0
(−e−c)k

k!

Altogether

Let l go to infinity. We have
limn→∞ Pr(E) = limn→∞ Pr(E) = 1− e−e−c

.
So, limn→∞ Pr(E) = 1− e−e−c
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Reflection on Gn,p

Homogeneity in degree

Degree of each vertex is Bin(n− 1, p).
Highly concentrated, as proven

Dense for constant p

m = Θ(n2) whp.
Billions of vertices with zeta edges, too dense

Unfit for real-world networks

Heterogeneous in degree distribution.
Sort of sparse

Remark

Gn,p-type randomness does appear in big graphs
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Szemerédi Regularity Lemma

Tool in extremal
graph theory by Endre
Szemerédi in 1970’s

Hungarian-American (1940-)
Doctor vs Mathematician
Gelfond vs Gelfand

Szemerédi’s Regularity Lemma

∀ε,m > 0,∃M > m such that any graph G with at least M
vertices has an ε-regular k-partition, where ∃m ≤ k ≤M .

Remark

Every large enough graph
can be partitioned into a
bounded number of parts
which pairwise are like
random graphs.
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