Probabilistic Method and Random Graphs

Lecture 7. Bins&Balls: Poisson Approximation¹ and Hashing²

Xingwu Liu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

¹Based on Chapter 5 of the textbook *Probability and Computing*.

²Based on Lecture 13 of Ryan O'Donnell's lecture notes of *Probability and Computing*.

 $\label{eq:Questions} Questions, \ comments, \ or \ suggestions?$

A recap of Lecture 6

Joint distribution of bin loads

$$Pr(X_1 = k_1, ... X_n = k_n) = \frac{m!}{k_1! k_2! \cdots k_n! n^m}$$

Poisson approximation theorem

$$(X_1^{(m)},X_2^{(m)},...X_n^{(m)})\sim (Y_1^{(\mu)},Y_2^{(\mu)},...Y_n^{(\mu)}|\sum Y_i^{(\mu)}=m).$$
 It holds for any $\mu.$

Application to the coupon collector's problem

$$\lim_{n\to\infty} \Pr(X > n \ln n + cn) = 1 - e^{-e^{-c}}$$

Poisson approximation is nice but ...

Hard to use due to conditioning.

Can we remove the condition?

Condition-free Poisson Approximation

Notation

 $X_i^{(m)}$: the load of bin i in (m, n)-model.

 $Y_i^{(m)}$: independent Poisson r.v.s with expectation $\frac{m}{n}$.

Theorem

For any non-negative n-ary function f, we have

$$\mathbb{E}\left[f\left(X_1^{(m)},...X_n^{(m)}\right)\right] \le e\sqrt{m} \,\,\mathbb{E}\left[f\left(Y_1^{(m)},...Y_n^{(m)}\right)\right].$$

Remark

The mean of the Poisson distribution is $\frac{m}{n}$, not arbitrary, unlike $\left(X_1^{(m)},X_2^{(m)},...X_n^{(m)}\right) \sim \left(Y_1^{(\mu)},Y_2^{(\mu)},...Y_n^{(\mu)}|\sum Y_i^{(\mu)}=m\right).$

Condition-free at the cost of approximation.

Proof

$$\begin{split} \mathbb{E}[f(Y_1^{(m)},...Y_n^{(m)})] \\ &= \sum_k \mathbb{E}[f(Y_1^{(m)},...Y_n^{(m)})| \sum_i Y_i^{(m)} = k] \Pr(\sum_i Y_i^{(m)} = k) \\ &\geq \mathbb{E}[f(Y_1^{(m)},...Y_n^{(m)})| \sum_i Y_i^{(m)} = m] \Pr(\sum_i Y_i^{(m)} = m) \\ &= \mathbb{E}[f(X_1^{(m)},...X_n^{(m)})] \Pr(\sum_i Y_i^{(m)} = m). \end{split}$$

$$\sum_i Y_i^{(m)} \sim Poi(m) \Rightarrow \Pr(\sum_i Y_i^{(m)} = m) = \frac{e^{-m}m^m}{m!} \geq \frac{1}{e\sqrt{m}}$$
 since $m! < e\sqrt{m}(me^{-1})^m$.

Remark

 $\mathbb{E}[f(X_1^{(m)},...X_n^{(m)})] \leq 2\mathbb{E}[f(Y_1^{(m)},...Y_n^{(m)})]$ if f is monotonic in m

In Terms of Probability

Any event that takes place with probability p in the independent Poisson approximation experiment takes places in Bins&Balls setting with probability at most $pe\sqrt{m}$

If the probability of an event in Bins&Balls is monotonic in m, it is at most twice of that in the independent Poisson approximation experiment

Remark

Powerful in bounding the probability of rare events in Bins&Balls.

Application

Lower bound of max load in (n, n)-model

Asymptotically, $\Pr(\mathcal{E}) \leq \frac{1}{n}$, where \mathcal{E} is the event that the max load in the (n,n)-Bins&Balls model is smaller than $\frac{\ln n}{\ln \ln n}$.

Remark: In fact, the max load is $\Theta\left(\frac{\ln n}{\ln \ln n}\right)$ w.h.p.

Proof

 \mathcal{E}' : Poisson approx. experiment has max load $\leq M = \frac{\ln n}{\ln \ln n}$. $\Pr(\mathcal{E}') \leq \left(1 - \frac{1}{eM!}\right)^n \leq e^{-\frac{n}{eM!}}$.

$$\begin{aligned} M! &\leq e\sqrt{M}(e^{-1}M)^M \leq M(e^{-1}M)^M \\ \Rightarrow &\ln M! \leq \ln n - \ln \ln n - \ln(2e) \Rightarrow M! \leq \frac{n}{2e \ln n}. \end{aligned}$$

Altogether,
$$\Pr(\mathcal{E}) \le e\sqrt{n} \Pr(\mathcal{E}') \le \frac{e\sqrt{n}}{n^2} \le \frac{1}{n}$$
.

Application: Hashing

Used to look up records, protect data, find duplications ...

Membership problem: password checker

Binary search vs Hashing

Hash table (1953, H. P. Luhn @IBM)

Hash functions: efficient, deterministic, uniform, non-invertible

Random: coin tossing, SUHA

SHA-1 (broken by Wang et al., 2005)

Bins&Balls model

Efficiency

Search time for m words in n bins: expected vs worst.

Space: \geq 256m bits if each word has 256 bits.

Potential wasted space: $\frac{1}{e}$ in the case of m=n.

Trade space for time. Can we improve space-efficiency?

Information Fingerprint

Fingerprint

Succinct identification of lengthy information

Fingerprint hashing

Fingerprinting → sorting fingerprints (rather than original data) → binary search.

Trade time for space

Performance

False positive: due to loss of information

No other errors

Partial correction using white lists

False positive

Probability of a false positive: m words, b bits

Fingerprint of a good word differs from that of a bad: $1 - \frac{1}{2^b}$.

Probability of a false positive: $1 - \left(1 - \frac{1}{2^b}\right)^m$.

Determine b

For a constant c, let $b=\log_2\frac{m}{c}=\Omega(\ln m)$. False positive < c. If $b\geq 2\log_2 m$ (namely, $c\leq \frac{1}{m}$), false positive $<\frac{1}{m}$. 2^{16} words, 32-bit fingerprints, false positive $<2^{-16}$. Save a factor of 8 if each word has 256 bits.

Can more space be saved while getting more time-efficient?

Bloom Filter

1970, CACM, by Burton H. Bloom.

Used in Bigtable and HBase.

Basic idea

Hash table + fingerprinting Illustration

False positive is the only source of errors.

False positive: m words, n-bit array, k mappings

A specific bit is 0 with probability $\left(1-\frac{1}{n}\right)^{km}\approx e^{-\frac{km}{n}}.$

Resonable to assume that this fraction of bits are 0.

By Poisson approximation and Chernoff bounds.

False positive probability:
$$f \triangleq \left(1 - \left(1 - \frac{1}{n}\right)^{km}\right)^k \approx \left(1 - e^{-\frac{km}{n}}\right)^k$$

Determine k for fixed m, n

Objective

Minimize f.

Dilemma of k: chances to find a 0-bit vs the fraction of 0-bits.

Optimal k

$$\begin{split} \frac{d \ln f}{d k} &= \ln \left(1 - e^{-\frac{k m}{n}}\right) + \frac{k m}{n} \frac{e^{-\frac{k m}{n}}}{1 - e^{-\frac{k m}{n}}}.\\ \frac{d \ln f}{d k}|_{k = \frac{n}{m} \ln 2} &= 0.\\ f|_{k = \frac{n}{m} \ln 2} &= 2^{-k} \approx 0.6185^{n/m}.\\ f &< 0.02 \text{ if } n = 8m \text{, and } f < 2^{-16} \text{ if } n = 23m \text{, saving } 1/4 \text{ space} \end{split}$$

Remark

Fix n/m, the #bits per item, and get a constant error probability. In fingerprint hashing, $\Omega(\ln m)$ bits per item guarantee a constant error probability

A Summary of Hashing

Pros&Cons

- Hash table: accurate, time-efficient, space-inefficient
- Info. fingerprint: small error, time-inefficient, space-efficient
- Bloom filter: small error, time-efficient, more space-efficient

Type	Space	Time	Error rate
Hash table	$\geq 256m$	Constant	0
Information fingerprint	$m \lg_2 \frac{m}{c}$	$\ln m$	c
Bloom filter	$m\frac{-\ln c}{\ln 2}$	Constant	c