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Lecture 7. Bins&Balls: Poisson Approximation! and Hashing?

Xingwu Liu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

!Based on Chapter 5 of the textbook Probability and Computing.
2Based on Lecture 13 of Ryan O'Donnell’s lecture notes of Probability and
Computing.
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Questions, comments, or suggestions?

Dae
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A recap of Lecture 6

Joint distribution of bin loads

PI'(X]_ = k]_, Xn = kn) = W

Poisson approximation theorem

(X{m),Xém), Xém)) ~ (Yl(“)’ }/Q(M)’ Yé#)‘ Z Y(M) — m)
It holds for any .

Application to the coupon collector’s problem

c

lim,, oo Pr(X >nlnn+cn)=1—¢"¢

A
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Poisson approximation is nice but ...

Hard to use due to conditioning. J

Can we remove the condition?
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Condition-free Poisson Approximation

Xi(m): the load of bin i in (m,n)-model.

Yi(m): independent Poisson r.v.s with expectation .

For any non-negative n-ary function f, we have

E [f (XY”), ...X}Z”))] <eymE [f (Yl(m), ...Y,Y”’)].

.

The mean of the Poisson distribution is % not arbitrary, unlike
<X£m), Xém), XT(Lm)) ~ (Yl(u)’ Y2(H)’ YTS#)| Z Y;('LL) _ m)

Condition-free at the cost of approximation.

.
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= Y B, Y = HPr ()Y = k)
>E[f(™, ) 3 Y™ = m Pr QY™ = m)

= E[f(x{™, . x{Pr(3 v™ = m).

>, V™ ~ Poi(m) = Pr(3, V™ = m) = £om™ > 1 ince
m! < ey/m(me=1)™.

E[f(X\™, X)) < 2B[f (Y™, .. ¥,{™)] if £ is monotonic in m

™7 = = =
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In Terms of Probability

Any event that takes place with probability p in the independent
Poisson approximation experiment takes places in Bins&Balls
setting with probability at most pe/m

If the probability of an event in Bins&Balls is monotonic in m, it is
at most twice of that in the independent Poisson approximation
experiment

v

Powerful in bounding the probability of rare events in Bins&Balls.
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Application

Lower bound of max load in (n,n)-model

Asymptotically, Pr(€) < % where £ is the event that the max load

Inn

in the (n,n)-Bins&Balls model is smaller than .

Inlnn

&’: Poisson approx. nexperimsnt has max load < M = lé‘}:n
Pr(&’) < (1 = ﬁ) < e e,

Remark: In fact, the max load is @( L ) w.h.p. J

M! < evVM(e 'M)M < M(e tM)M
=IhM!'<Inn—-Inlnn—In(2e) = M! < -

2elnn"

Altogether, Pr(€) < ey/nPr(£) < @ < 1, |
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Application: Hashing

Used to look up records, protect data, find duplications ... J

Membership problem: password checker
Binary search vs Hashing

Hash table (1953, H. P. Luhn @IBM)

Hash functions: efficient, deterministic, uniform, non-invertible
Random: coin tossing, SUHA
SHA-1 (broken by Wang et al., 2005)
Bins&Balls model )
Efficency .|
Search time for m words in n bins: expected vs worst.
Space: >256m bits if each word has 256 bits.

Potential wasted space: % in the case of m = n.
Trade space for time. Can we improve space-efficiency?

™ = - = =




Information Fingerprint

Fingerprint
Succinct identification of lengthy information

Fingerprint hashing

Fingerprinting ~~ sorting fingerprints (rather than original data)
~> binary search.
Trade time for space

Performance

False positive: due to loss of information
No other errors
Partial correction using white lists
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False positive

Probability of a false positive: m words, b bits

Fingerprint of a good word differs from that of a bad: 1 — 2—1!,
1 )m

Probability of a false positive: 1 — (1 — 55

Determine b

For a constant ¢, let b = logy, ™ = Q(Inm). False positive < c.
If b > 2logy m (namely, ¢ < 1), false positive < L.

216 words, 32-bit fingerprints, false positive < 2716,

Save a factor of 8 if each word has 256 bits.

Can more space be saved while getting more time-efficient? )
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Bloom Filter

1970, CACM, by Burton H. Bloom. J

Used in Bigtable and HBase. )

Basic idea

Hash table + fingerprinting
[llustration

False positive is the only source of errors. J

False positive: m words, n-bit array, & mappings

A specific bit is 0 with probability (1 — %)km ~e

Resonable to assume that this fraction of bits are 0.
By Poisson approximation and Chernoff bounds.
k k
False positive probability: f = (1 -(1- %)km) ~ (1 — e‘T)

T = =
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Determine k for fixed m,n

Objective
Minimize f.
Dilemma of k: chances to find a 0-bit vs the fraction of 0-bits.

km
dlnf _ o _km km e n
iR —ln<1 e n ) + =0 P
dln f

dk ‘k:%InQ = 0.
fle=z1m2 = 27% ~ 0.6185™/™.
f<0.02if n=8m, and f < 2716 if n = 23m, saving 1/4 space

Fix n/m, the #bits per item, and get a constant error probability.
In fingerprint hashing, Q(Inm) bits per item guarantee a constant
error probability
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A Summary of Hashing

Pros& Cons

@ Hash table: accurate, time-efficient, space-inefficient

@ Info. fingerprint: small error, time-inefficient, space-efficient

@ Bloom filter: small error, time-efficient, more space-efficient

Type Space Time Error rate
Hash table > 256m | Constant 0
Information fingerprint | mlg, Inm c
Bloom filter mj&%c Constant c
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