Probabilistic Method and Random Graphs
 Lecture 6. Bins\&Balls: Poisson Approximation ${ }^{1}$

Xingwu Liu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

[^0]
Preface

Questions, comments, or suggestions?

Review: bins-and-balls

General model: (m, n)-bins-and-balls
m balls independently randomly placed in n bins
Distribution of the load X of a certain bin: $\operatorname{Bin}(m, 1 / n)$
When $m, n \gg r, \operatorname{Pr}(X=r) \approx e^{-\mu} \frac{\mu^{r}}{r!}$ with $\mu=\frac{m}{n}$.

Poisson distribution

Poisson distribution: $\operatorname{Pr}\left(X_{\mu}=r\right)=e^{-\mu} \frac{\mu^{r}}{r!}$.
Law of rare events
Rooted at Law of Small Numbers
Law of Small Numbers can be extended to non-independent cases

Review: Basic Properties of Poisson distribution

Low-order moments
$\mathbb{E}\left[X_{\mu}\right]=\operatorname{Var}\left[X_{\mu}\right]=\mu$.

Additive

By uniqueness of moment generation functions, $X_{\mu_{1}}+X_{\mu_{2}}=X_{\mu_{1}+\mu_{2}}$ if independent.

Chernoff-like bounds

1. If $x>\mu$, then $\operatorname{Pr}\left(X_{\mu} \geq x\right) \leq \frac{e^{-\mu}(e \mu)^{x}}{x^{x}}$.
2. If $x<\mu$, then $\operatorname{Pr}\left(X_{\mu} \leq x\right) \leq \frac{e^{-\mu}(e \mu)^{x}}{x^{x}}$.

Review: Joint Distribution of Bin Loads

Basic observation

Loads of multiple bins are not independent.
Hard to handle

Maximum load

- $\operatorname{Pr}(L \geq 2) \geq 0.5$ if $m \geq \sqrt{2 n \ln 2}$
- Birthday paradox
- $\operatorname{Pr}\left(L \geq 3 \frac{\ln n}{\ln \ln n}\right) \leq \frac{1}{n}$ if $m=n$

Joint Distribution of Bin Loads

Let's be ambitious

Is there a closed form of $\operatorname{Pr}\left(X_{1}=k_{1}, \ldots, X_{n}=k_{n}\right)$?
Easy when $n=2$.

Joint Distribution of Bin Loads

Let's be ambitious

Is there a closed form of $\operatorname{Pr}\left(X_{1}=k_{1}, \ldots, X_{n}=k_{n}\right)$?
Easy when $n=2$. Hard in general?

Joint Distribution of Bin Loads

Theorem

$$
\operatorname{Pr}\left(X_{1}=k_{1}, \cdots, X_{n}=k_{n}\right)=\frac{m!}{k_{1}!k_{2}!\cdots k_{n}!n^{m}}
$$

Proof.

By the chain rule,

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{1}=k_{1}, \cdots, X_{n}=k_{n}\right) \\
= & \prod_{i=0}^{n-1} \operatorname{Pr}\left(X_{i+1}=k_{i+1} \mid X_{1}=k_{1}, \cdots, X_{i}=k_{i}\right)
\end{aligned}
$$

Note that $X_{i+1} \mid\left(X_{1}=k_{1}, \cdots, X_{i}=k_{i}\right)$ is a binomial r.v. of $m-\left(k_{1}+\cdots+k_{i}\right)$ trials with success probability $\frac{1}{n-i}$.

Remark

- You can also prove by counting
- Multinomial coefficient $\frac{m!}{k_{1}!k_{2}!\cdots k_{n}!}$: the number of ways to allocate m distinct balls into groups of sizes k_{1}, \cdots, k_{n}

Silver bullet for Bins\&Balls problems?

In principle

Yes, since it can be computed

In practice

Usually No, since it is too hard to compute. Example: what's the probability of having empty bins?

In need

Approximation for computing or insights for analysis

Poisson Approximation

At the first glance

The (marginal) load $X_{i} \sim \operatorname{Bin}\left(m, \frac{1}{n}\right)$ for each bin i. $\left\{X_{1}, \cdots, X_{n}\right\}$ are not independent.
But seemingly the only dependence is that their sum is m. So,

A applausible conjecture

The joint distribution $\left(X_{1}, \cdots, X_{n}\right) \sim\left(Y_{1}, \cdots, Y_{n} \mid \sum Y_{i}=m\right)$, where $Y_{i} \sim \operatorname{Bin}\left(m, \frac{1}{n}\right)$ are mutually independent

If this is true, a good simplification is obtained.

However

It is NOT the case!
($Y_{1}, \cdots, Y_{n} \mid \sum Y_{i}=m$) doesn't have marginal distr. as Y_{i} 's.

General Fact

Y_{i} : mutual independent, $1 \leq i \leq n$.
$\left(Y_{1}, \ldots, Y_{n} \mid g(\vec{Y})\right)$ doesn't have marginal distr. as Y_{i} 's.

Figure: Distributions of X, Y

Figure: Joint distribution $(X, Y) \mid X+Y=1$ (blue
curve)

Figure: The marginals

Recall the false conjecture

The joint distribution $\left(X_{1}, \cdots, X_{n}\right) \sim\left(Y_{1}, \cdots, Y_{n} \mid \sum Y_{i}=m\right)$, where $Y_{i} \sim \operatorname{Bin}\left(m, \frac{1}{n}\right)$ are mutually independent

Is the conjecture true for any distribution other than binomial?
Yes!
Poisson distribution again. (Better than the conjecture)

Poisson Approximation Theorem

Notation

$X_{i}^{(m)}$: the load of bin i in (m, n)-model, $1 \leq i \leq n$.
$Y_{i}^{(\mu)}$: independent Poisson r.v.s with expectation $\mu, 1 \leq i \leq n$.

Theorem

$\left(X_{1}^{(m)}, X_{2}^{(m)}, \ldots X_{n}^{(m)}\right) \sim\left(Y_{1}^{(\mu)}, Y_{2}^{(\mu)}, \ldots Y_{n}^{(\mu)} \mid \sum Y_{i}^{(\mu)}=m\right)$.

Remarks

- The equation is independent of μ : For any m, the same Poisson distribution works.
- Since $\operatorname{Pr}\left(X_{1}^{(m)}, X_{2}^{(m)}, \ldots X_{n}^{(m)}\right) \propto \operatorname{Pr}\left(Y_{1}^{(\mu)}, Y_{2}^{(\mu)}, \ldots Y_{n}^{(\mu)}\right)$, the X_{i} 's are decoupled.
- The two distributions are exactly equal, not approximate.

Proof

By straightforward calculation.

Example

Coupon Collector Problem

X : the number of purchases until n types are collected.
For any constant $c, \lim _{n \rightarrow \infty} \operatorname{Pr}(X>n \ln n+c n)=1-e^{-e^{-c}}$.

Remark: $\operatorname{Pr}(n \ln n-4 n \leq X \leq n \ln n+4 n) \geq 0.98$

Basic idea of the proof

Use bins-and-balls model and the Poisson approximation.
It holds under the Poisson approximation.
The approximation is actually accurate.

Proof

Modeling

$X>n \ln n+c n$ is equivalent to event $\overline{\mathcal{E}}$, where \mathcal{E} means that there is no empty bin in the $(n \ln n+c n, n)$-Bins\&Balls model.

It holds under the Poisson approximation

Approximation experiment: n bins, each having an independent Poisson number Y_{i} of balls with the expectation $\ln n+c$.
Event \mathcal{E}^{\prime} : No bin is empty.
$\operatorname{Pr}\left(\mathcal{E}^{\prime}\right)=\left(1-e^{-(\ln n+c)}\right)^{n}=\left(1-\frac{e^{-c}}{n}\right)^{n} \rightarrow e^{-e^{-c}}$.

The approximation is accurate

Obj.: Asymptotically, $\operatorname{Pr}(\mathcal{E})=\operatorname{Pr}\left(\mathcal{E}^{\prime}\right)$.
By Poisson Approximation, $\operatorname{Pr}(\mathcal{E})=\operatorname{Pr}\left(\mathcal{E}^{\prime} \mid Y=n \ln n+c n\right)$, so we prove $\operatorname{Pr}\left(\mathcal{E}^{\prime}\right)=\operatorname{Pr}\left(\mathcal{E}^{\prime} \mid Y=n \ln n+c n\right)$ where $Y=\sum_{i=1}^{n} Y_{i}$.

Proof: $\operatorname{Pr}\left(\mathcal{E}^{\prime}\right)=\operatorname{Pr}\left(\mathcal{E}^{\prime} \mid Y=n \ln n+c n\right)$ asymptotically

Further reduction

Since $\operatorname{Pr}\left(\mathcal{E}^{\prime}\right)=\operatorname{Pr}\left(\mathcal{E}^{\prime} \mid Y \in \mathbb{Z}\right)$, there should be $\mathcal{N} \subset \mathbb{Z}$ s.t $n \ln n+c n \in \mathcal{N}$ and $\operatorname{Pr}\left(\mathcal{E}^{\prime}\right) \approx \operatorname{Pr}\left(\mathcal{E}^{\prime} \mid Y \in \mathcal{N}\right)$.

If \mathcal{N} is not too small or too big, i.e.

- $\operatorname{Pr}(Y \in \mathcal{N}) \approx 1$;
- $\operatorname{Pr}\left(\mathcal{E}^{\prime} \mid Y \in \mathcal{N}\right) \approx \operatorname{Pr}\left(\mathcal{E}^{\prime} \mid Y=n \ln n+c n\right)$.

We finish the proof by total probability formula.

Does such \mathcal{N} exist?

Yes! Try the $\sqrt{2 m \ln m}$-neighborhood of $m=n \ln n+c n$.

Proof: $\operatorname{Pr}(|Y-m| \leq \sqrt{2 m} \ln m) \rightarrow 1$

$Y \sim \operatorname{Poi}(m)$.
By Chernoff bound $\operatorname{Pr}(Y \geq y) \leq \frac{e^{-m}(e m)^{y}}{y^{y}}=e^{y-m-y \ln \frac{y}{m}}$,

$$
\begin{aligned}
\operatorname{Pr}(Y>m+\sqrt{2 m \ln m}) \leq & e^{\sqrt{2 m \ln m}-(m+\sqrt{2 m \ln m}) \ln \left(1+\sqrt{\frac{2 \ln m}{m}}\right)} \\
& \text { by } \ln (1+z) \geq z-z^{2} / 2 \text { for } z \geq 0 \\
\leq & e^{-\ln m+\frac{\ln ^{3 / 2} m}{\sqrt{m}}} \rightarrow 0
\end{aligned}
$$

Likewise, $\operatorname{Pr}(Y<m-\sqrt{2 m \ln m}) \rightarrow 0$.

Altogether

$\operatorname{Pr}(Y \in \mathcal{N}) \approx 1$. So, \mathcal{N} is not too small.

Proof: $\operatorname{Pr}\left(\mathcal{E}^{\prime}| | Y-m \mid \leq \sqrt{2 m \ln m}\right) \approx \operatorname{Pr}\left(\mathcal{E}^{\prime} \mid Y=m\right)$

$\operatorname{Pr}\left(\mathcal{E}^{\prime} \mid Y=k\right)$ increases with k, so

$$
\begin{aligned}
& \operatorname{Pr}\left(\mathcal{E}^{\prime} \mid Y=m-\sqrt{2 m \ln m}\right) \\
\leq & \operatorname{Pr}\left(\mathcal{E}^{\prime}| | Y-m \mid \leq \sqrt{2 m \ln m}\right) \\
\leq & \operatorname{Pr}\left(\mathcal{E}^{\prime} \mid Y=m+\sqrt{2 m \ln m}\right) .
\end{aligned}
$$

$$
\left|\operatorname{Pr}\left(\mathcal{E}^{\prime}| | Y-m \mid \leq \sqrt{2 m \ln m}\right)-\operatorname{Pr}\left(\mathcal{E}^{\prime} \mid Y=m\right)\right|
$$

$$
\leq \operatorname{Pr}\left(\mathcal{E}^{\prime} \mid Y=m+\sqrt{2 m \ln m}\right)-\operatorname{Pr}\left(\mathcal{E}^{\prime} \mid Y=m-\sqrt{2 m \ln m}\right)
$$

$$
=\operatorname{Pr}(A)(\text { By Poisson approximation }) .
$$

Event A : In the $(m+\sqrt{2 m \ln m}, n)$-Bins\&Balls model, the first $m-\sqrt{2 m \ln m}$ balls leave at least one bin empty, but at least one among the next $2 \sqrt{2 m \ln m}$ balls goes into each of the empty bins.

By Union Bound, $\operatorname{Pr}(A) \rightarrow 0$

[^0]: ${ }^{1}$ The slides are mainly based on Chapter 5 of the textbook Probability and Computing.

