Probabilistic Method and Random Graphs Lecture 6. Bins&Balls: Poisson Approximation¹

Xingwu Liu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

¹The slides are mainly based on Chapter 5 of the textbook *Probability and Computing.*

Questions, comments, or suggestions?

General model: (m, n)-bins-and-balls

 \boldsymbol{m} balls independently randomly placed in \boldsymbol{n} bins

Distribution of the load X of a certain bin: Bin(m, 1/n)

When
$$m, n \gg r$$
, $\Pr(X = r) \approx e^{-\mu \frac{\mu^r}{r!}}$ with $\mu = \frac{m}{n}$.

Poisson distribution

Poisson distribution:
$$\Pr(X_{\mu} = r) = e^{-\mu} \frac{\mu^r}{r!}$$
.

Law of rare events

Rooted at Law of Small Numbers

Law of Small Numbers can be extended to non-independent cases

Low-order moments

$$\mathbb{E}[X_{\mu}] = Var[X_{\mu}] = \mu.$$

Additive

By uniqueness of moment generation functions, $X_{\mu_1} + X_{\mu_2} = X_{\mu_1 + \mu_2}$ if independent.

Chernoff-like bounds

1. If $x > \mu$, then $\Pr(X_{\mu} \ge x) \le \frac{e^{-\mu}(e\mu)^x}{x^x}$. 2. If $x < \mu$, then $\Pr(X_{\mu} \le x) \le \frac{e^{-\mu}(e\mu)^x}{x^x}$.

Review: Joint Distribution of Bin Loads

Basic observation

Loads of multiple bins are not independent. Hard to handle

Maximum load

•
$$\Pr(L \ge 2) \ge 0.5$$
 if $m \ge \sqrt{2n \ln 2}$

• Birthday paradox

•
$$\Pr(L \ge 3 \frac{\ln n}{\ln \ln n}) \le \frac{1}{n}$$
 if $m = n$

Let's be ambitious

Is there a closed form of $Pr(X_1 = k_1, ..., X_n = k_n)$? Easy when n = 2.

Let's be ambitious

Is there a closed form of $Pr(X_1 = k_1, ..., X_n = k_n)$? Easy when n = 2. Hard in general?

Joint Distribution of Bin Loads

Theorem

$$\Pr(X_1 = k_1, \cdots, X_n = k_n) = \frac{m!}{k_1! k_2! \cdots k_n! n^m}$$

Proof.

By the chain rule,

$$\Pr(X_1 = k_1, \cdots, X_n = k_n)$$

$$= \prod_{i=0}^{n-1} \Pr(X_{i+1} = k_{i+1} | X_1 = k_1, \cdots, X_i = k_i)$$
Note that $X_{i+1} | (X_1 = k_1, \cdots, X_i = k_i)$ is a binomial r.v. of $m - (k_1 + \cdots + k_i)$ trials with success probability $\frac{1}{n-i}$.

Remark

- You can also prove by counting
- Multinomial coefficient ^{m!}/<sub>k₁!k₂!...k_n!: the number of ways to allocate m distinct balls into groups of sizes k₁,..., k_n

 </sub>

Silver bullet for Bins&Balls problems?

In principle

Yes, since it can be computed

In practice

Usually No, since it is too hard to compute. Example: what's the probability of having empty bins?

In need

Approximation for computing or insights for analysis

Poisson Approximation

At the first glance

The (marginal) load $X_i \sim Bin(m, \frac{1}{n})$ for each bin i. $\{X_1, \dots, X_n\}$ are not independent. But seemingly the only dependence is that their sum is m. So,

A applausible conjecture

The joint distribution $(X_1, \dots, X_n) \sim (Y_1, \dots, Y_n | \sum Y_i = m)$, where $Y_i \sim Bin(m, \frac{1}{n})$ are mutually independent

If this is true, a good simplification is obtained.

However

It is NOT the case! $(Y_1, \dots, Y_n | \sum Y_i = m)$ doesn't have marginal distr. as Y_i 's.

General Fact

 $\begin{array}{l} Y_i: \mbox{ mutual independent, } 1\leq i\leq n.\\ (Y_1,...,Y_n|g(\overrightarrow{Y})) \mbox{ doesn't have marginal distr. as } Y_i\mbox{'s.} \end{array}$

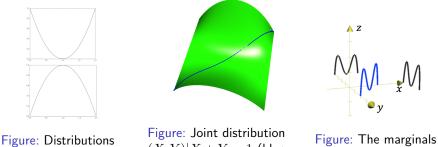


Figure: Joint distribution (X,Y)|X+Y=1 (blue curve)

Recall the false conjecture

The joint distribution $(X_1, \dots, X_n) \sim (Y_1, \dots, Y_n | \sum Y_i = m)$, where $Y_i \sim Bin(m, \frac{1}{n})$ are mutually independent

Is the conjecture true for any distribution other than binomial?

Yes!

Poisson distribution again. (Better than the conjecture)

Poisson Approximation Theorem

Notation

$$X_i^{(m)}$$
: the load of bin *i* in (m, n) -model, $1 \le i \le n$.

 $Y_i^{(\mu)}$: independent Poisson r.v.s with expectation μ , $1 \le i \le n$.

Theorem

$$\left(X_1^{(m)}, X_2^{(m)}, \dots X_n^{(m)}\right) \sim \left(Y_1^{(\mu)}, Y_2^{(\mu)}, \dots Y_n^{(\mu)} | \sum Y_i^{(\mu)} = m\right).$$

Remarks

- The equation is independent of μ : For any m, the same Poisson distribution works.
- Since $\Pr\left(X_1^{(m)}, X_2^{(m)}, ... X_n^{(m)}\right) \propto \Pr\left(Y_1^{(\mu)}, Y_2^{(\mu)}, ... Y_n^{(\mu)}\right)$, the X_i 's are decoupled.
- The two distributions are exactly equal, not approximate.

Proof

By straightforward calculation.

Coupon Collector Problem

X: the number of purchases until n types are collected. For any constant c, $\lim_{n\to\infty} \Pr(X > n \ln n + cn) = 1 - e^{-e^{-c}}$.

Remark: $Pr(n \ln n - 4n \le X \le n \ln n + 4n) \ge 0.98$

Basic idea of the proof

Use bins-and-balls model and the Poisson approximation. It holds under the Poisson approximation. The approximation is actually accurate.

Modeling

 $X > n \ln n + cn$ is equivalent to event $\overline{\mathcal{E}}$, where \mathcal{E} means that there is no empty bin in the $(n \ln n + cn, n)$ -Bins&Balls model.

It holds under the Poisson approximation

Approximation experiment: n bins, each having an independent Poisson number Y_i of balls with the expectation $\ln n + c$. Event \mathcal{E}' : No bin is empty. $\Pr(\mathcal{E}') = \left(1 - e^{-(\ln n + c)}\right)^n = \left(1 - \frac{e^{-c}}{n}\right)^n \to e^{-e^{-c}}.$

The approximation is accurate

Obj.: Asymptotically, $\Pr(\mathcal{E}) = \Pr(\mathcal{E}')$. By Poisson Approximation, $\Pr(\mathcal{E}) = \Pr(\mathcal{E}'|Y = n \ln n + cn)$, so we prove $\Pr(\mathcal{E}') = \Pr(\mathcal{E}'|Y = n \ln n + cn)$ where $Y = \sum_{i=1}^{n} Y_i$.

Further reduction

Since $\Pr(\mathcal{E}') = \Pr(\mathcal{E}'|Y \in \mathbb{Z})$, there should be $\mathcal{N} \subset \mathbb{Z}$ s.t $n \ln n + cn \in \mathcal{N}$ and $\Pr(\mathcal{E}') \approx \Pr(\mathcal{E}'|Y \in \mathcal{N})$.

If ${\mathcal N}$ is not too small or too big, i.e.

- $\Pr(Y \in \mathcal{N}) \approx 1;$
- $\Pr(\mathcal{E}'|Y \in \mathcal{N}) \approx \Pr(\mathcal{E}'|Y = n \ln n + cn).$

We finish the proof by total probability formula.

Does such \mathcal{N} exist?

Yes! Try the $\sqrt{2m \ln m}$ -neighborhood of $m = n \ln n + cn$.

Proof: $\Pr(|Y - m| \le \sqrt{2m \ln m}) \to 1$

$$Y \sim Poi(m).$$

By Chernoff bound $\Pr(Y \ge y) \le \frac{e^{-m}(em)^y}{y^y} = e^{y-m-y\ln\frac{y}{m}},$
$$\Pr\left(Y > m + \sqrt{2m\ln m}\right) \le e^{\sqrt{2m\ln m} - (m+\sqrt{2m\ln m})\ln(1+\sqrt{\frac{2\ln m}{m}})}$$

$$by \ln(1+z) \ge z - z^2/2 \text{ for } z \ge 0$$

$$\le e^{-\ln m + \frac{\ln^{3/2}m}{\sqrt{m}}} \to 0.$$

Likewise,
$$\Pr(Y < m - \sqrt{2m \ln m}) \to 0.$$

Altogether

$$\Pr(Y \in \mathcal{N}) \approx 1$$
. So, \mathcal{N} is not too small.

Proof:
$$\Pr(\mathcal{E}'||Y-m| \le \sqrt{2m \ln m}) \approx \Pr(\mathcal{E}'|Y=m)$$

$$\begin{aligned} &\Pr(\mathcal{E}'|Y=k) \text{ increases with } k \text{, so} \\ &\Pr(\mathcal{E}'|Y=m-\sqrt{2m\ln m}) \\ &\leq &\Pr(\mathcal{E}'||Y-m| \leq \sqrt{2m\ln m}) \\ &\leq &\Pr(\mathcal{E}'|Y=m+\sqrt{2m\ln m}). \end{aligned}$$

$$|\Pr(\mathcal{E}'||Y-m| \le \sqrt{2m\ln m}) - \Pr(\mathcal{E}'|Y=m)|$$

$$\leq \Pr(\mathcal{E}'|Y = m + \sqrt{2m\ln m}) - \Pr(\mathcal{E}'|Y = m - \sqrt{2m\ln m})$$

$$=$$
 Pr(A)(By Poisson approximation)

Event A: In the $(m + \sqrt{2m \ln m}, n)$ -Bins&Balls model, the first $m - \sqrt{2m \ln m}$ balls leave at least one bin empty, but at least one among the next $2\sqrt{2m \ln m}$ balls goes into each of the empty bins.

By Union Bound, $Pr(A) \rightarrow 0$

ヘロト ヘ通 ト ヘヨト ヘヨト