Probabilistic Method and Random Graphs

Lecture 4. Chernoff bounds: behind and beyond

Xingwu Liu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

Preface

Questions, comments, or suggestions?

A brief review of Lecture 3

Chernoff bounds for independent sum

Let $X=\sum_{i=1}^{n} X_{i}$, where $X_{i}^{\prime} s$ are independent Poisson trials. Let $\mu=\mathbb{E}[X]$. Then

1. For $\delta>0, \operatorname{Pr}(X \geq(1+\delta) \mu) \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu} \leq e^{-\frac{\delta^{2}}{2+\delta} \mu}$.
2. For $1>\delta>0, \operatorname{Pr}(X \leq(1-\delta) \mu) \leq\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu} \leq e^{-\frac{\delta^{2}}{2} \mu}$.

Exponentially decreasing upper bound! μ can be replaced by its upper/lower bound.

Trick in the proof: introduce λ and $e^{(\cdot)}$
$\operatorname{Pr}(X \geq(1+\delta) \mu)=\operatorname{Pr}\left(e^{\lambda X} \geq e^{\lambda(1+\delta) \mu}\right) \leq \frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda(1+\delta) \mu}}$

Specialized for i.i.d. case

$\operatorname{Pr}(|X-\mu|>t) \leq e^{-\frac{2 t^{2}}{n}}$ for any $t>0$.

Generalization

Other domains $\left[0, b_{i}\right]$, or non-binary over $[0,1]$.
Hoeffding's Ineq. for $\left[a_{i}, b_{i}\right]: \operatorname{Pr}(|X-\mathbb{E}[X]| \geq t) \leq 2 e^{-\frac{2 t^{2}}{\sum_{i}\left(b_{i}-a_{i}\right)^{2}}}$.
Bernstein's and McDiarmid's Ineq.: higher order and beyond sum.

A brief review of Lecture 3

McDiarmid's Ineq.

General $f\left(X_{1}, \ldots, X_{n}\right)$	$\begin{gathered} \text { McDiarmid } \\ 1989 \end{gathered}$	Zhang, Liu et al. 2019	Kontorovich et al. 2008
Linear$X_{1}+\cdots+X_{n}$	$\begin{gathered} \text { Chernoff } \\ 1948 \end{gathered}$	Janson 2004	Bosq 2012
	Independent	Dependent (Qualitative)	Dependent (Quantitative)

A brief review of Lecture 3

Paradigm: Union bound + Chernoff bounds.

Application

X : number of Heads in n tosses of a fair coin.

- Markov's inequality: $\operatorname{Pr}\left(X-\frac{n}{2}>\sqrt{n \ln n}\right)<1$
- Chebyshev's inequality: $\operatorname{Pr}\left(X-\frac{n}{2}>\sqrt{n \ln n}\right)<\frac{1}{\ln n}$
- Chernoff bounds: $\operatorname{Pr}\left(X-\frac{n}{2}>\sqrt{n \ln n}\right)<\frac{1}{n^{2}}$

Reflections

Why are Chernoff bound so good?
Can it be improved by non-exponential functions?
Is there anything to do with moments?
How much information do moments capture?

The story begins with generating functions...

Generating functions

Informal definition

A power series whose coefficients encode information about a sequence of numbers.

Example: Probability generating function

Given a discrete random variable X whose values are non-negative integers, $G_{X}(t) \triangleq \sum_{n \geq 0} \operatorname{Pr}(X=n) t^{n}=\mathbb{E}\left[t^{X}\right]$.
Example: Bernoulli and binomial random variables.

Properties

Convergence: It converges if $|t|<1$.
Uniqueness: $G_{X}(\cdot) \equiv G_{Y}(\cdot)$ implies the same distributions.

Application

Toy: Use uniqueness to show that the summation of independent identical binomial distribution is binomial.
Deriving Moments: $G_{X}^{(k)}(1)=\mathbb{E}[X(X-1) \cdots(X-k+1)]$.

Moment generating functions

Shortcoming of probability generating functions

Only valid for non-nagetive integer random variables.

Moment generating functions

$$
M_{X}(t) \triangleq \sum_{x} \operatorname{Pr}(X=x) e^{t x}=\mathbb{E}\left[e^{t X}\right]
$$

Example of Bernoulli and binomial distributions.

Properties

- If $M_{X}(t)$ converges around $0, M_{X}^{(k)}(0)=\mathbb{E}\left[X^{k}\right]$, meaning the moments are exactly the coefficients of the Taylor's expansion.
- Convergence: $M_{X}(t)$ converges when X is bounded.
- If independent, $M_{X+Y}=M_{X} M_{Y}$.
- Uniqueness: If $M_{X}(t)=M_{Y}(t)$ and both converge around 0 , then X and Y are identically distributed.

Moment generating functions may not converge
Cauchy distribution: density function $f(x)=\frac{1}{\pi\left(1+x^{2}\right)}$ does not have moments for any order.

An example of non-uniqueness of moments

Log-Normal-like distributions:
Density function $f_{X_{n}}(x)=\frac{e^{-\frac{1}{2}(\ln x)^{2}}}{\sqrt{2 \pi} x}(1+\sin (2 n \pi \ln x))$.
k-Moments $\mathbb{E}\left[X_{n}^{k}\right]=e^{k^{2} / 2}$ for non-negative integers k.

Characteristic functions

Definition

$\varphi_{X}(t) \triangleq \int_{\mathbb{R}} e^{i t x} d F_{X}(x)$ where $i=\sqrt{-1}$ and t is real.

Properties

Convergence: It always exists.
Uniqueness: It uniquely determines the distribution.
Due to invertibility of the Fourier transform.

Ready to get insights

Moments

How much information do moments capture?
Conditionally, moments=distribution.

Chernoff Bounds

- Why is it so good?
- Can it be improved by non-exponential functions?
- Anything to do with moments?

What's your answer?

A story of generating function

Introduced in 1730 by Abraham de Moivre, to solve the general linear recurrence problem

Wisdom: A generating function is a clothesline on which we hang up a sequence of numbers for display. -Herbert Wilf

Application to Fibonacci numbers (by courtesy of de Moivre): $F(x)=\sum_{n=0}^{\infty} F_{n} x^{n}=x+\sum_{n=2}^{\infty}\left(F_{n-1}+F_{n-2}\right) x^{n}=$ $x+x F(x)+x^{2} F(x)$
$\Rightarrow F(x)=\frac{x}{1-x-x^{2}}=\frac{1}{\sqrt{5}}\left(\frac{\psi}{x+\psi}-\frac{\phi}{x+\phi}\right)=\sum_{n=0}^{\infty} \frac{1}{\sqrt{5}}\left(\phi^{n}-\psi^{n}\right) x^{n}$
$\Rightarrow F_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\psi^{n}\right)$, where $\phi=\frac{1+\sqrt{5}}{2}, \psi=\frac{1-\sqrt{5}}{2}$.

Brief introduction to Abraham de Moivre

- May 26, 1667Nov. 27, 1754
- A French mathematician
- de Moivre's formula
- Binet's formula
- Central limit theorem
- Stirling's formula

Legend

- Friends: Isaac Newton, Edmond Halley, and James Stirling
- Struggled for a living and lived for mathematics
- The Doctrine of Chances was prized by gamblers
- 2nd probability textbook in history
- Predicted the exact date of his death

Chernoff bound in a big picture

Fundamental laws of probability theory

Law of large numbers (Cardano, Jacob Bernoulli 1713, Poisson 1837): The sample average converges to the expected value.

Central limit theorem (Abraham de Moivre 1733, Laplace 1812, Lyapunov 1901, Pólya 1920): The arithmetic mean of independent random variables is approximately normally distributed.

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)-\mu \leq \frac{x}{\sqrt{n}}\right)=\Phi\left(\frac{x}{\sigma}\right)
$$

Marvelous but ...
Say nothing about the rate of convergence

Large deviation theory
How fast does it converge? Beyond central limit theorem

A glance at large deviation theory

Motivation

X_{n} : the number of heads in n flips of a fair coin.
By the central limit theorem, $\operatorname{Pr}\left(X_{n} \geq \frac{n}{2}+\sqrt{n}\right) \rightarrow 1-\Phi(1)$.
What about $\operatorname{Pr}\left(X_{n} \geq \frac{n}{2}+\frac{n}{3}\right)$? Nothing but converging to 0 .

Chernoff bounds say...
$\operatorname{Pr}\left(X_{n} \geq \frac{n}{2}+\frac{n}{3}\right) \leq\left(\frac{e^{\frac{2}{3}}}{\left(\frac{5}{3}\right)^{\frac{5}{3}}}\right)^{\frac{n}{2}} \approx e^{-0.092 n}$.

Actually

$\operatorname{Pr}\left(X_{n} \geq \frac{n}{2}+\frac{n}{3}\right) \approx e^{-0.2426 n+o(n)} \ll$ Chernoff bound.
See Large Deviations-Willperkins.pdf

Oh, no!

Mission of Large Deviation Theory

Find the asymptotic probabilities of rare events - how do they decay to 0 as $n \rightarrow \infty$?

Rare events mean large deviation. So large that CLT is almost useless (deviation of $\omega(\sqrt{n})$).

Intuition

Inspired by Chernoff bounds, conjecture that probabilities of rare events will be exponentially small in $n: e^{-c n}$ for some c.
Q: Does $\lim _{n \rightarrow \infty} \frac{1}{n} \ln \operatorname{Pr}\left(\mathcal{E}_{n}^{\text {rare }}\right)$ exist? If so, what's it?

Large Deviation Principle

Simple form (By courtesy of Cramer, 1938)

Let $X_{1}, \ldots X_{n}, \ldots \in \mathbb{R}$ be i.i.d. r.v. which satisfy $\mathbb{E}\left[e^{t X_{1}}\right]<\infty$ for $t \in \mathbb{R}$. Then for any $t>\mathbb{E}\left[X_{1}\right]$, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \ln \operatorname{Pr}\left(\sum_{i=1}^{n} X_{i} \geq t n\right)=-I(t)
$$

where

$$
I(t) \triangleq \sup _{\lambda>0} \lambda t-\ln \mathbb{E}\left[e^{\lambda X_{1}}\right]
$$

Remark

$I(\cdot)$: rate function.
Many variants: the factor $\frac{1}{n}$, random variables

Large Deviation Principle: Proof

Large Deviation Principle

$\lim _{n \rightarrow \infty} \frac{1}{n} \ln \operatorname{Pr}\left(\sum_{i=1}^{n} X_{i} \geq t n\right)=-\left(\sup _{\lambda>0} \lambda t-\ln \mathbb{E}\left[e^{\lambda X_{1}}\right]\right)$.
Proof: Upper bound
Let $Y_{n}=\frac{\sum_{i=1}^{n} X_{i}}{n}, M(\lambda)=\mathbb{E}\left[e^{\lambda X_{1}}\right]$, and $\psi(\lambda)=\ln M(\lambda)$.
$\operatorname{Pr}\left(Y_{n} \geq t\right) \leq e^{-\lambda n t}(M(\lambda))^{n}$ for any $\lambda \geq 0$.
$\frac{1}{n} \ln \operatorname{Pr}\left(Y_{n} \geq t\right) \leq-\lambda t+\psi(\lambda)$.
$\frac{1}{n} \ln \operatorname{Pr}\left(Y_{n} \geq t\right) \leq-\sup _{\lambda \geq 0}(\lambda t-\psi(\lambda))$.

Large Deviation Principle: Proof

Lower bound

The maximizer λ_{0} of $\lambda t-\psi(\lambda)$ satisfies $t=\int \frac{x e^{\lambda_{0} x}}{M\left(\lambda_{0}\right)} d \mu(x)$.

Let $d \mu_{0}(x)=\frac{e^{\lambda_{0} x}}{M\left(\lambda_{0}\right)} d \mu(x)$. Its expectation $\int x d \mu_{0}(x)=t$.

Let $A=\left\{Y_{n} \geq t\right\} \subseteq \mathbb{R}^{n}, A_{\delta}=\left\{Y_{n} \in[t, t+\delta]\right\} \subseteq \mathbb{R}^{n}$.

$$
\begin{aligned}
\operatorname{Pr}_{\mu}(A) \geq \operatorname{Pr}_{\mu}\left(A_{\delta}\right) & =\int_{A_{\delta}} \Pi_{i=1}^{n} d \mu\left(x_{i}\right) \\
& =\int_{A_{\delta}}\left(M\left(\lambda_{0}\right)\right)^{n} e^{-\lambda_{0} \sum_{i=1}^{n} x_{i}} \Pi_{i=1}^{n} d \mu_{0}\left(x_{i}\right) \\
& \geq\left(M\left(\lambda_{0}\right) e^{-\lambda_{0}(t+\delta)}\right)^{n} \operatorname{Pr}_{\mu_{0}}\left(A_{\delta}\right)
\end{aligned}
$$

Applying CLT to μ_{0}, we have $\lim _{n \rightarrow \infty} \operatorname{Pr}_{\mu_{0}}\left(A_{\delta}\right)=\frac{1}{2}$.
$\lim _{n \rightarrow \infty} \frac{1}{n} \ln \operatorname{Pr}\left(Y_{n} \geq t\right) \geq \psi\left(\lambda_{0}\right)-(t+\delta) \lambda_{0}$, and let $\delta \rightarrow 0$.

Remarks

Large deviation theory vs CLT

Seemingly easy to get exponential decay in many cases, but hard to calculate.

Chernoff bounds fit for large deviation

- Con: Generally weaker
- Pro: Always holds, not just asymptotically

Key assumption

Independence!

References

(1) http://nowak.ece.wisc.edu/SLT07/lecture7.pdf
(2) When Do the Moments Uniquely Identify a Distribution
(3) http:
//willperkins.org/6221/slides/largedeviations.pdf

