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Questions, comments, or suggestions? J
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A brief review of Lecture 3

Chernoff bounds for independent sum
Let X =", X;, where X/s are independent Poisson trials. Let
u=E[X]. Then

o0 po_o_8
1. For & > 0, Pr(X Z (]. +5)/J) S (W) S e 2+67.

— 2
2. For1>5>0'Pr(X§(1_5)'u)§(@_fg)%yée_%“.

Exponentially decreasing upper bound!
w can be replaced by its upper/lower bound.

Trick in the proof: introduce X and e’

E e)\X
Pr(X > (14 0)u) = Pr (M > 0+01) < GALWL
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A brief review of Lecture 3

Specialized for i.i.d. case

+2
Pr(| X —u|>1t) < e~ for any t > 0.

v

Generalization

Other domains [0, b;], or non-binary over [0, 1].
2t2

Hoeffding's Ineq. for [a;, b;]: Pr(|X — E[X]| > t) < 2e Ziti—a)?,
Bernstein's and McDiarmid's Ineq.: higher order and beyond sum. )
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A brief review of Lecture 3

McDiarmid's Ineq.

General
fXq, ..., Xp)

Linear

Xl +"‘+Xn

McDiarmid Zhang, Liu et al. | Kontorovich et
1989 2019 al. 2008
Chernoff Janson
1948 2004 Bosq 2012
Ind q Dependent Dependent
ndependent (Qualitative) (Quantitative)
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A brief review of Lecture 3

Paradigm: Union bound + Chernoff bounds. J

Application

X: number of Heads in n tosses of a fair coin.
@ Markov's inequality: Pr(X — 5 > Vnlnn) < 1
o Chebyshev's inequality: Pr(X — 2 > vnlnn) < =
o Chernoff bounds: Pr(X — % > vnlnn) < %

n

Reflections

Why are Chernoff bound so good?

Can it be improved by non-exponential functions?
Is there anything to do with moments?

How much information do moments capture?

The story begins with generating functions- - - J

™ = - = =




Generating functions

Informal definition

A power series whose coefficients encode information about a
sequence of numbers.

Example: Probability generating function

Given a discrete random variable X whose values are non-negative
integers, Gx(t) 2 3,50 Pr(X = n)t" = E[tX].
Example: Bernoulli and binomial random variables.

Properties

Convergence: It converges if [¢t| < 1.
Uniqueness: Gx(-) = Gy (-) implies the same distributions.

Application

Toy: Use uniqueness to show that the summation of independent
identical binomial distribution is binomial.
Deriving Moments: Gg];)(l) =EX(X-1)--- (X —-k+1)].

T = =
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Moment generating functions

Shortcoming of probability generating functions

Only valid for non-nagetive integer random variables.

Moment generating functions

Mx(t) £ >, Pr(X = z)et® = E[etX].
Example of Bernoulli and binomial distributions.

Properties

o If Mx(t) converges around 0, M)((k)(O) = E[X*], meaning the
moments are exactly the coefficients of the Taylor's expansion.

e Convergence: Mx (t) converges when X is bounded.

o If independent, Mx.y = Mx My .

e Uniqueness: If Mx(t) = My (t) and both converge around 0,
then X and Y are identically distributed.

v
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But

Moment generating functions may not converge

Cauchy distribution: density function f(x) =
have moments for any order.

1
m does not

An example of non-uniqueness of moments

Log-Normal-like distributions:
—l(ln w)z
e 2

Density function fx, (z) = W(l + sin(2nmlnx)).

k-Moments E[X*] = ¢¥°/2 for non-negative integers k.
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Characteristic functions

ox(t) £ [p e dFx () where i = v/—1 and ¢ is real.

Properties

Convergence: It always exists.
Uniqueness: It uniquely determines the distribution.
Due to invertibility of the Fourier transform.

.
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Ready to get insights

How much information do moments capture?

Conditionally, moments=distribution. )

Chernoff Bounds

@ Why is it so good?

@ Can it be improved by non-exponential functions?

@ Anything to do with moments?

A\

What's your answer?

-
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A story of generating function

Introduced in 1730 by Abraham de Moivre, to solve the general
linear recurrence problem

Wisdom: A generating function is a clothesline on which we hang
up a sequence of numbers for display. -Herbert Wilf

Application to Fibonacci numbers (by courtesy of de Moivre):
Fz) =3 o Fat" =24+ 3 0o (Foa + Frg)a” =

z+ zF(x) + 22F(x)

= F(a) = g = U5 (4p — #4) = Zoeo 75 (9" 92"
= Fp = 22 (¢" —y"), where ¢ = L5/ ¢ — 1545,
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Brief introduction to Abraham de Moivre

o May 26, 1667- @ de Moivre's formula
Nov. 27, 1754 @ Binet's formula

@ A French @ Central limit theorem
mathematician e Stirling's formula

Legend

@ Friends: Isaac Newton, Edmond Halley, and James Stirling

@ Struggled for a living and lived for mathematics
@ The Doctrine of Chances was prized by gamblers
e 2nd probability textbook in history

@ Predicted the exact date of his death
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Chernoff bound in a big picture

Fundamental laws of probability theory

Law of large numbers (Cardano, Jacob Bernoulli 1713, Poisson
1837): The sample average converges to the expected value.
Central limit theorem (Abraham de Moivre 1733, Laplace 1812,
Lyapunov 1901, Pdlya 1920): The arithmetic mean of independent
random variables is approximately normally distributed.

(1) -+ ) 0

Marvelous but ...

Say nothing about the rate of convergence

Large deviation theory

How fast does it converge? Beyond central limit theorem
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A glance at large deviation theory

X,,: the number of heads in n flips of a fair coin.
By the central limit theorem, Pr(X,, > 5 + \/n) — 1 — ®(1).
What about Pr(X,, > § + §)? Nothing but converging to 0.

Chernoff bounds say...
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Pr(X, > 2 + 2) ~ ¢ 0-2420n+0(n) « Chernoff bound.
See Large Deviations-Willperkins. pdf

Oh, no! )
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Mission of Large Deviation Theory

Find the asymptotic probabilities of rare events - how do they
decay to 0 as n — c0?

Rare events mean large deviation.
So large that CLT is almost useless (deviation of w(y/n)).

Inspired by Chernoff bounds, conjecture that probabilities of rare
events will be exponentially small in n : e=“" for some c.
Q: Does limy, o £ In Pr(£5°) exist? If so, what's it?
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Large Deviation Principle

Simple form (By courtesy of Cramer, 1938)

Let X1,...X,,... € R bei.i.d. r.v. which satisfy E[e!*1] < oo for
t € R. Then for any t > E[X;], we have

1 .
71151010 ﬁlnPr <Z X; > tn) = —I(t),

i=1

where

I(t) £ sup M — InE[eM].
A>0

v
I(-): rate function.
Many variants: the factor % random variables

\
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Large Deviation Principle: Proof

Large Deviation Principle

limy, o0 = I Pr(31 X; > tn) = — (supys At — InE[e?1]).

Proof: Upper bound

Let Y, = 2= 17()\) = E[e*X1], and ¥(A) = In M ().

Pr(Yy > £) < e (M(X))" for any A > 0. J
LInPr(Y, > t) < Xt +9(A). )
%ln Pr(Y, > t) < —supyso(Mt — ¥(N)). J
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Large Deviation Principle: Proof

Lower bound

The maximizer Ao of At — ¢(\) satisfies ¢t = [ ]”\”j?;;) du(x).

Let dug(z) = %du(x). Its expectation [ zduo(z) = t.

N—

Let A= {Y’ﬂ zt} CR" A5 = {Yn € [tat'i'(ﬂ} CR"™

Pr, (A) > Pr.(As) = / 7, du(as)

As

B /A (M (Xo))"e™ 0 Xzt “II dyug ()
5

s (00 9)" 1)

Applying CLT to pg, we have limy,_,o Pry,(As) = % J

limy, o0 2 I Pr(Y;, > t) > 9(Xo) — (t + 6)Ao, and let § — 0.

-
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Remarks

Large deviation theory vs CLT J

Seemingly easy to get exponential decay in many cases, but hard
to calculate.

Chernoff bounds fit for large deviation

@ Con: Generally weaker

@ Pro: Always holds, not just asymptotically

Key assumption

Independence!
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