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Preface

Questions, comments, or suggestions?
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A brief review of Lecture 3

Chernoff bounds for independent sum

Let X =
∑n

i=1Xi, where X ′is are independent Poisson trials. Let
µ = E[X]. Then

1. For δ > 0, Pr(X ≥ (1 + δ)µ) ≤
(

eδ

(1+δ)(1+δ)

)µ
≤ e−

δ2

2+δ
µ.

2. For 1 > δ > 0, Pr(X ≤ (1− δ)µ) ≤
(

e−δ

(1−δ)(1−δ)

)µ
≤ e−

δ2

2
µ.

Exponentially decreasing upper bound!
µ can be replaced by its upper/lower bound.

Trick in the proof: introduce λ and e(·)

Pr(X ≥ (1 + δ)µ) = Pr
(
eλX ≥ eλ(1+δ)µ

)
≤ E[eλX ]

eλ(1+δ)µ
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A brief review of Lecture 3

Specialized for i.i.d. case

Pr(|X − µ| > t) ≤ e−
2t2

n for any t > 0.

Generalization

Other domains [0, bi], or non-binary over [0, 1].

Hoeffding’s Ineq. for [ai, bi]: Pr(|X − E[X]| ≥ t) ≤ 2e
− 2t2∑

i(bi−ai)2 .
Bernstein’s and McDiarmid’s Ineq.: higher order and beyond sum.
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A brief review of Lecture 3

McDiarmid’s Ineq.
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A brief review of Lecture 3

Paradigm: Union bound + Chernoff bounds.

Application

X: number of Heads in n tosses of a fair coin.

Markov’s inequality: Pr(X − n
2 >
√
n lnn) < 1

Chebyshev’s inequality: Pr(X − n
2 >
√
n lnn) < 1

lnn

Chernoff bounds: Pr(X − n
2 >
√
n lnn) < 1

n2

Reflections

Why are Chernoff bound so good?
Can it be improved by non-exponential functions?
Is there anything to do with moments?
How much information do moments capture?

The story begins with generating functions· · ·
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Generating functions

Informal definition

A power series whose coefficients encode information about a
sequence of numbers.

Example: Probability generating function

Given a discrete random variable X whose values are non-negative
integers, GX(t) ,

∑
n≥0 Pr(X = n)tn = E[tX ].

Example: Bernoulli and binomial random variables.

Properties

Convergence: It converges if |t| < 1.
Uniqueness: GX(·) ≡ GY (·) implies the same distributions.

Application

Toy: Use uniqueness to show that the summation of independent
identical binomial distribution is binomial.
Deriving Moments: G

(k)
X (1) = E[X(X − 1) · · · (X − k + 1)].

7 / 21



Moment generating functions

Shortcoming of probability generating functions

Only valid for non-nagetive integer random variables.

Moment generating functions

MX(t) ,
∑

x Pr(X = x)etx = E[etX ].
Example of Bernoulli and binomial distributions.

Properties

If MX(t) converges around 0, M
(k)
X (0) = E[Xk], meaning the

moments are exactly the coefficients of the Taylor’s expansion.
Convergence: MX(t) converges when X is bounded.
If independent, MX+Y = MXMY .
Uniqueness: If MX(t) = MY (t) and both converge around 0,
then X and Y are identically distributed.
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But

Moment generating functions may not converge

Cauchy distribution: density function f(x) = 1
π(1+x2)

does not

have moments for any order.

An example of non-uniqueness of moments

Log-Normal-like distributions:

Density function fXn(x) = e−
1
2 (ln x)2

√
2πx

(1 + sin(2nπ lnx)).

k-Moments E[Xk
n] = ek

2/2 for non-negative integers k.
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Characteristic functions

Definition

ϕX(t) ,
∫
R e

itxdFX(x) where i =
√
−1 and t is real.

Properties

Convergence: It always exists.
Uniqueness: It uniquely determines the distribution.
Due to invertibility of the Fourier transform.
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Ready to get insights

Moments

How much information do moments capture?
Conditionally, moments=distribution.

Chernoff Bounds

Why is it so good?

Can it be improved by non-exponential functions?

Anything to do with moments?

What’s your answer?
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A story of generating function

Introduced in 1730 by Abraham de Moivre, to solve the general
linear recurrence problem

Wisdom: A generating function is a clothesline on which we hang
up a sequence of numbers for display. -Herbert Wilf

Application to Fibonacci numbers (by courtesy of de Moivre):
F (x) =

∑∞
n=0 Fnx

n = x+
∑∞

n=2(Fn−1 + Fn−2)x
n =

x+ xF (x) + x2F (x)

⇒ F (x) = x
1−x−x2 = 1√

5

(
ψ

x+ψ −
φ

x+φ

)
=
∑∞

n=0
1√
5

(φn − ψn)xn

⇒ Fn = 1√
5

(φn − ψn), where φ = 1+
√
5

2 , ψ = 1−
√
5

2 .
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Brief introduction to Abraham de Moivre

May 26, 1667-
Nov. 27, 1754

A French
mathematician

de Moivre’s formula

Binet’s formula

Central limit theorem

Stirling’s formula

Legend

Friends: Isaac Newton, Edmond Halley, and James Stirling

Struggled for a living and lived for mathematics

The Doctrine of Chances was prized by gamblers

2nd probability textbook in history

Predicted the exact date of his death

13 / 21



Chernoff bound in a big picture

Fundamental laws of probability theory

Law of large numbers (Cardano, Jacob Bernoulli 1713, Poisson
1837): The sample average converges to the expected value.
Central limit theorem (Abraham de Moivre 1733, Laplace 1812,
Lyapunov 1901, Pólya 1920): The arithmetic mean of independent
random variables is approximately normally distributed.

lim
n→∞

Pr

((
1

n

n∑
i=1

Xi

)
− µ ≤ x√

n

)
= Φ

(x
σ

)

Marvelous but ...

Say nothing about the rate of convergence

Large deviation theory

How fast does it converge? Beyond central limit theorem
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A glance at large deviation theory

Motivation

Xn: the number of heads in n flips of a fair coin.
By the central limit theorem, Pr(Xn ≥ n

2 +
√
n)→ 1− Φ(1).

What about Pr(Xn ≥ n
2 + n

3 )? Nothing but converging to 0.

Chernoff bounds say...

Pr(Xn ≥ n
2 + n

3 ) ≤

(
e
2
3

( 5
3)

5
3

)n
2

≈ e−0.092n.

Actually

Pr(Xn ≥ n
2 + n

3 ) ≈ e−0.2426n+o(n) � Chernoff bound.
See Large Deviations-Willperkins.pdf

Oh, no!
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Mission of Large Deviation Theory

Find the asymptotic probabilities of rare events - how do they
decay to 0 as n→∞?

Rare events mean large deviation.
So large that CLT is almost useless (deviation of ω(

√
n)).

Intuition

Inspired by Chernoff bounds, conjecture that probabilities of rare
events will be exponentially small in n : e−cn for some c.
Q: Does limn→∞

1
n ln Pr(Eraren ) exist? If so, what’s it?
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Large Deviation Principle

Simple form (By courtesy of Cramer, 1938)

Let X1, ...Xn, ... ∈ R be i.i.d. r.v. which satisfy E[etX1 ] <∞ for
t ∈ R. Then for any t > E[X1], we have

lim
n→∞

1

n
ln Pr

(
n∑
i=1

Xi ≥ tn

)
= −I(t),

where
I(t) , sup

λ>0
λt− lnE[eλX1 ].

Remark

I(·): rate function.
Many variants: the factor 1

n , random variables
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Large Deviation Principle: Proof

Large Deviation Principle

limn→∞
1
n ln Pr(

∑n
i=1Xi ≥ tn) = −

(
supλ>0 λt− lnE[eλX1 ]

)
.

Proof: Upper bound

Let Yn =
∑n
i=1Xi
n , M(λ) = E[eλX1 ], and ψ(λ) = lnM(λ).

Pr(Yn ≥ t) ≤ e−λnt(M(λ))n for any λ ≥ 0.

1
n ln Pr(Yn ≥ t) ≤ −λt+ ψ(λ).

1
n ln Pr(Yn ≥ t) ≤ − supλ≥0(λt− ψ(λ)).
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Large Deviation Principle: Proof

Lower bound

The maximizer λ0 of λt− ψ(λ) satisfies t =
∫

xeλ0x

M(λ0)
dµ(x).

Let dµ0(x) = eλ0x

M(λ0)
dµ(x). Its expectation

∫
xdµ0(x) = t.

Let A = {Yn ≥ t} ⊆ Rn, Aδ = {Yn ∈ [t, t+ δ]} ⊆ Rn.

Prµ(A) ≥ Prµ(Aδ) =

∫
Aδ

Πn
i=1dµ(xi)

=

∫
Aδ

(M(λ0))
ne−λ0

∑n
i=1 xiΠn

i=1dµ0(xi)

≥
(
M(λ0)e

−λ0(t+δ)
)n

Prµ0(Aδ).

Applying CLT to µ0, we have limn→∞ Prµ0(Aδ) = 1
2 .

limn→∞
1
n ln Pr(Yn ≥ t) ≥ ψ(λ0)− (t+ δ)λ0, and let δ → 0.
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Remarks

Large deviation theory vs CLT

Seemingly easy to get exponential decay in many cases, but hard
to calculate.

Chernoff bounds fit for large deviation

Con: Generally weaker

Pro: Always holds, not just asymptotically

Key assumption

Independence!
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