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Questions, comments, or suggestions? J
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A brief review
Expectation, k-moment, variance

Inequalities

Universal: Union bound
1-moment: Markov's inequality
2-moment: Chebychev’'s inequality

Applications to Coupon Collector's Problem

E[X]=nH(n) = nlnn =~ 30 < 200 when n = 12.
Markov's inequality: Pr(X > 200) < 1/6.

Chebychev's inequality: Pr(X > 200) < 0.01.

Union bound: Pr(X > 200) < 0.00001.

The more information you have, the better bounds you get.
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Chernoff bounds: inequalities of independent sum

Motiving Example

Flip a fair coin for n trials. Let X be the number of Heads, which

is around the expectation 5. How about its concentration?
) . . . _n n
@ Markov's inequality: Pr(X — 5 > vnlnn) < PNy 1

o Chebyshev's inequality: Pr(X — 5 > vnlnn) < ﬁ
e Can we do better?

o Due to independent sum: X =" | X;
e YES!
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Chernoff bounds: basic form

Chernoff bounds
Let X = )", X;, where X/s are independent Poisson trials. Let
u=E[X]. Then
s p
1. Forany § >0, Pr(X > (1+0)u) < (W) :

2. Forany1>6>0,Pr(X <(1-0)u) < (@j;)%)u-

1)

Note that 0 < m < 1 when § > 0.

The bound in 1 exponentially deceases w.r.t. p!
And so is the bound in 2.
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Proof of the upper tail bound

For any A > 0,
Pr(X > (14 d)u) =Pr (eAX > @A(1+5)H) < J
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Proof of the upper tail bound

For any A > 0,
Pr(X > (14 d)u) =Pr (eAX > @A(1+5)H) < J

E[e*] =E [e/\Z?:le} =E[[[i=, e*%] = ITim, E [e4]. J
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Proof of the upper tail bound

For any A > 0,
AX < A1+ E[erX]
Pr(X > (1+6)u) =Pr(e* >e ) < pmeem e
] B [T ] B[ e = ILER] |
Let p; = Pr(X; = 1) for each i. Then,
E [e)‘Xi] =piert + (1 —p)er? =1 +pi(€/\ -1)< epi(e*=1) J
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Proof of the upper tail bound

For any A > 0,
A(1+6 E[e2X]
Pr(X > (1+6)u) =Pr (M >e 1+ )“) < S
B[] = E [ 50 K] —E[[[L, %) = [L B[] |

Let p; = Pr(X; = 1) for each i. Then,
E [e)‘Xi] =piert + (1 —p)er? =14pi(e* —1) < epi(e*=1) ’

So, E[ /\X] == ePi(e?=1) — XLy pi(e?—1) = o(* =D, J
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Proof of the upper tail bound

For any A > 0,
AX
Pr(X > (14 6)u) =Pr (6>\X > e>‘(1+5)“) < E[e*X] J

— eAd+0)p "

B[] =B [0S 5] B [T, ] - [[LE[]. |

Let p; = Pr(X; = 1) for each i. Then,
E [e)‘Xi] =piert + (1 —p)er? =14pi(e* —1) < epi(e*=1)

SO ]E [ /\X] < H ep'L € _1) = 621 1pl( 1) — e(ek_l)u_ J

= APk = A(Ito)m POYGE))

e)\X A e>‘— I
Thus, Pr(X > (1+6)u) < E[e2¥] < G <e< 1)> .
Let A =1In(1+ ) > 0, and the proof ends.
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Lower tail bound and application

Lower tail bound
Can be proved likewise.

A tentative application

Recall the coin flipping example. By the Chernoff bound,

n e\/nlnn
Pr(X—§>\/nlnn)< ENar)
<1+2 “;{l)

Even hard to figure out the order.

Is there a more friendly form?

M
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Chernoff bounds: a simplified form

Simplified Chernoff bounds for i.i.d. case

Let X =>"" , X;, where X/s are i.i.d. Bernoulli r.v. Let
2
1 =E[X]. Then Pr(|X — | >t) < e n for any t > 0.

.

Simplified Chernoff bounds
Let X =>"" , X;, where X/s are independent Poisson trials. Let

p = E[X] .
)
1. Pr(X > (1 +6)u) <e 285" for any § > 0;
2
2. Pr(X <(1-9d)p) < e~ Th for any 1 > 6> 0.

W
Application to coin flipping
Pr(X — § > +vnlnn) < n=5. This is exponentially tighter than
Chebychev's inequality ﬁ

\
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Proof and Remarks

Idea of the proof

¢ -2 )
W<e 243 <:>5—(1+5)1n(1+5)<_26T5<:

1n(1+6)>2+5 for § > 0.

1.

-5 52
2. Use calculus to show that m <e 7.

2
When 1 > 6§ > 0, wehave—m< , SO )
Pr(X > (1 4 6)u) < e~ %, and Pr(|X — | > 6p) < 20 FH

The bound is simpler but looser. Generally, it is outperformed by
the basic Chernoff bound. See example.

9/23



Example: random rounding

Minimum-congestion path planning

e G = (V,E) is an undirected graph. D = {(s;,t;)}; C V2.
e Find a path P; connecting (s;,t;) for every i.

@ Objective: minimize the congestion max.cp cong(e), the
number of the paths among {P;}*, that pass e.

This problem is NP-hard. We will give an approximation algorithm
based on randomized rounding.

@ Model as an integer program
@ Relax it into a linear program
@ Round the solution

@ Analyze the approximation ratio
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ILP and its relaxation

P;: the set of candidate paths connecting s; and t;;
f};: the indicator of whether we pick path P € P; or not;
C': the congestion in the graph.

ILP LP
Min C Min C
st.3 pep, fp = 1,Vi st.3 pep, fp=1,Vi
Zi > cepep, Jp S C,Ve = > Xecpep, Jp < O, Ve
fp € {01}, Vi, P fp€[0,1],Vi, P

Round a solution to the LP

For each 4, f? forms a probability function on IP;, which enables to
randomly choose one path (say P;) from P;.
Use Py,--- , P, as an approximate solution to the ILP.

.
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Approximation ratio

C': optimum congestion of the ILP.

C*: optimum congestion of the LP. C* < C.
X¢: indicator of whether e € F;.

Xe 2% X¢: congestion of the edge e.

X £ max, X¢ the network congestion.

Objective: Pr(X > (1+0)C) is small for a small §

Note that X > (1 +0)C equals | J, (X > (1 +0)C).

By union bound, we just show Pr(X¢ > (1+6)C) <

Apply Chernoff bound to X°¢ =), X7
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Prove Pr(X¢ > (1 +6)C) < %

n°

E[Xze] = ZeePePi fIZD '
p=E[X] = ¥, B[X¢] = 5 Teeper, f5 < C* < C.

If C = w(lnn), 6 can be arbitrarily small
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Prove Pr(X¢ > (1+6)C) < %

n°

If C = O(Inn), § can be improved to be § = © ({22 )

Inlnn

Proof: By the basic Chernoff bounds,

)

e )

Pr(X® > (1+0)C) < [ ¢

When § = © (22, (1 + ) In(1 + &) = O(lnn) and

Inlnn/’

d—(1+49)In(1+0) =06(nn).

C
(1+5)(1+5):| = (1_|_5)(1+6)'
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Remarks of the application

It illustrates the practical difference of various Chernoff bounds.

Is it a mistake to use the inaccurate expectation?
No! It's a powerful trick.
If ur, < p < pg, the following bounds hold:

. . 1
e Upper tail: Pr(X > (14 d0)un) < ((1%%) :

o Lower tail: Pr(X < (1—0)ug) < ((1_‘3)%)“.

Chernoff bounds + Union bound: a paradigm

A high-level picture: Want to upper-bound Pr(something bad).
1. By Union bound, Pr(something bad) < Y Pr(bad;);

2. By Chernoff bounds, Pr(bad;) < minuscule for each i;

3. Pr(something bad) < Large x minuscule = small.

- = = = <
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Why the Chernoff bound is better? Note that
it's rooted at Markov's Inequality. J

than exponential?

Can it be improved by using functions other J
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General bounds for independent sums

Each X; € {0,a;} where a; <1

Basic Chernoff bounds remain valid.

Each X; € [0,1] but is not necessarily a Poisson trial

Basic Chernoff bounds remain valid (by e’ < ze'* + (1 — z)e%).

The domains [a;, b;] of X;'s differ

_ 2t2
Hoeffding's Inequality: Pr(|X — E[X]| > t) < 2e Ziti-a)?,
Proposed in 1963.

Remarks of Hoeffding's Inequality

1. It considers the absolute, rather than relative, deviation.
Particularly useful if = 0.

2. When each X; € [0, 5], it is tighter than the simplified basic
Chernoff bounds if § is big, and looser otherwise.

T = = =
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Hoeffding's Inequality

Let X = > | X;, where X; € [a;, b;] are independent r.v. Then

22

e
Pr(|X — E[X]| > t) <2e Ziti—2)® for any t > 0

Idea of the proof

A (—a)®
8

1. Given r.v. Z € [a,b] with E[Z] = 0, E[e}] <
-Hoeffding's Lemma
2.

E[eAXi—E[X5])
Pr( X —E[X]>t) < ILE| o ]

bi—a;)2
< e)‘QZi ( ! Sal) )\t

3. Choose A to minimize RHS. Likewise for Pr(X — E[X]| < —t).
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Proof of Hoeffding's Lemma

. . \Z 22 (b=a)?
Lemma: Given r.v. Z € [a,b] with E[Z] =0, E[e*”] <e 5 . J

M < 2=aehb g Z:—Ze’\“, for z € [a, b J
be)\a ae)\b
= b—a b-a
=(1—0+0e)e % where § = b_—aa’ u=Ab—a)

— €¢(u) where (b(u) 2 —0Ou I ln(l —0 I 96“)

Taylor expansion ¢(u) = ¢(0) + ¢'(0) + %u?
Then ¢(u) < % since ¢(0) = ¢/(0) = 0,4 (€) < 1
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Example: Hoeffding's Inequality + Union bound

Set balancing

Given a matrix A € {0,1}™"*™ find b€ {—1,1}" s.t. || Ab || is
minimized. )
feature 1: ail aiz2 - QAim
feature 2: a1 a9 -+ aA2m ) )
, each column is an object.
feature n: anl an2 '+ QGnm
Want to partition the objects so that every feature is balanced.
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Example: Hoeffding's Inequality + Union bound

Given a matrix A € {0,1}™"*™ find b€ {—1,1}" s.t. || Ab || is
minimized. )
feature 1: all aiz2 -+ Qim
feature 2: a1 a9 -+ aA2m ) )
, each column is an object.
feature n: anl an2 '+ QGnm
Want to partition the objects so that every feature is balanced.

Algorithm

Uniformly randomly sample b.
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Performance analysis

Performance

Pr(|| Ab |loo> VAmInn) < 2

Forany 1 <i<mn, Z; =}, a;;bj is the ith entry of Ab. By union
bound, it suffices to prove Pr(|Z;| > V4mlnn) < % for each 1.

v

Fix i. W.l.o.g, assume a;; = 1 iff 1 < j < k for some k < m. Then
Zi =S b1 —|—...—|—bk.

Note that b;'s are independent over {—1, 1} with E[b;] = 0.

By Hoeffding's Inequality, Pr(|Z;| > vAmInn) < 2¢~ 5" < % J




Concentration Inequalities: higher order and beyond sum

Bernstein Inequality (Bernstein, 1911)

Let X = )", Xj, where X;'s are independent r.v satisfying
E[X;] = 0, E[X?] < b;, E[|X;|*] < % H*2k! for k > 2. Then
+2

Pr(|X| >1t) <2e 2T %) for any £ > 0

@ Extended to dependent or multi-dimensional variables

A\,

McDiarmid Inequality (McDiarmid, 1989)

Let Xy,---, X, be independent r.v. and f(-) is an n-ary function
with bounded differences ¢, -+ ,¢,. Let Y = f(Xq, -, X,,).
212

Then Pr([Y —E[Y]| > t) <2 =19 forany ¢t >0

e Extended to (quantitative and qualitative) dependence

\
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Reflection on moments and Chernoff bounds

Chernoff Bounds

Why is it so good?

Can it be improved by non-exponential functions?
Anything to do with moments?

Do moments uniquely determine the distribution?
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