Probabilistic Method and Random Graphs Lecture 3. Chernoff bounds: behind and beyond

Xingwu Liu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

<ロト < 回 ト < 画 ト < 画 ト < 画 ト < 画 ト < 画 ト 1/23 Questions, comments, or suggestions?

Moments

Expectation, k-moment, variance

Inequalities

Universal: Union bound

1-moment: Markov's inequality

2-moment: Chebychev's inequality

Applications to Coupon Collector's Problem

$$\begin{split} \mathbb{E}[X] &= nH(n) \approx n \ln n \approx 30 \ll 200 \text{ when } n = 12. \\ \text{Markov's inequality: } \Pr(X > 200) < 1/6. \\ \text{Chebychev's inequality: } \Pr(X > 200) < 0.01. \\ \text{Union bound: } \Pr(X > 200) < 0.00001. \\ \text{The more information you have, the better bounds you get.} \end{split}$$

Motiving Example

Flip a fair coin for n trials. Let X be the number of Heads, which is around the expectation $\frac{n}{2}$. How about its concentration?

- Markov's inequality: $\Pr(X \frac{n}{2} > \sqrt{n \ln n}) < \frac{n}{n + 2\sqrt{n \ln n}} \rightsquigarrow 1$
- Chebyshev's inequality: $\Pr(X \frac{n}{2} > \sqrt{n \ln n}) < \frac{1}{\ln n}$
- Can we do better?
 - Due to independent sum: $X = \sum_{i=1}^{n} X_i$
 - YES!

Chernoff bounds

Let $X = \sum_{i=1}^{n} X_i$, where $X'_i s$ are **independent** Poisson trials. Let $\mu = \mathbb{E}[X]$. Then 1. For any $\delta > 0$, $\Pr(X \ge (1+\delta)\mu) \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}$. 2. For any $1 > \delta > 0$, $\Pr(X \le (1-\delta)\mu) \le \left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}$.

Remarks

Note that $0 < \frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} < 1$ when $\delta > 0$. The bound in 1 exponentially deceases w.r.t. μ ! And so is the bound in 2.

For any
$$\lambda > 0$$
,
 $\Pr(X \ge (1+\delta)\mu) = \Pr\left(e^{\lambda X} \ge e^{\lambda(1+\delta)\mu}\right) \le \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda(1+\delta)\mu}}$.

For any
$$\lambda > 0$$
,
 $\Pr(X \ge (1+\delta)\mu) = \Pr\left(e^{\lambda X} \ge e^{\lambda(1+\delta)\mu}\right) \le \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda(1+\delta)\mu}}.$

$$\mathbb{E}\left[e^{\lambda X}\right] = \mathbb{E}\left[e^{\lambda \sum_{i=1}^{n} X_{i}}\right] = \mathbb{E}\left[\prod_{i=1}^{n} e^{\lambda X_{i}}\right] = \prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda X_{i}}\right].$$

For any
$$\lambda > 0$$
,
 $\Pr(X \ge (1+\delta)\mu) = \Pr\left(e^{\lambda X} \ge e^{\lambda(1+\delta)\mu}\right) \le \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda(1+\delta)\mu}}.$

$$\mathbb{E}\left[e^{\lambda X}\right] = \mathbb{E}\left[e^{\lambda \sum_{i=1}^{n} X_{i}}\right] = \mathbb{E}\left[\prod_{i=1}^{n} e^{\lambda X_{i}}\right] = \prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda X_{i}}\right].$$

Let
$$p_i = \Pr(X_i = 1)$$
 for each i . Then,

$$\mathbb{E}\left[e^{\lambda X_i}\right] = p_i e^{\lambda \cdot 1} + (1 - p_i)e^{\lambda \cdot 0} = 1 + p_i(e^{\lambda} - 1) \le e^{p_i(e^{\lambda} - 1)}.$$

For any
$$\lambda > 0$$
,
 $\Pr(X \ge (1+\delta)\mu) = \Pr\left(e^{\lambda X} \ge e^{\lambda(1+\delta)\mu}\right) \le \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda(1+\delta)\mu}}.$

$$\mathbb{E}\left[e^{\lambda X}\right] = \mathbb{E}\left[e^{\lambda \sum_{i=1}^{n} X_{i}}\right] = \mathbb{E}\left[\prod_{i=1}^{n} e^{\lambda X_{i}}\right] = \prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda X_{i}}\right].$$

Let
$$p_i = \Pr(X_i = 1)$$
 for each i . Then,

$$\mathbb{E}\left[e^{\lambda X_i}\right] = p_i e^{\lambda \cdot 1} + (1 - p_i) e^{\lambda \cdot 0} = 1 + p_i (e^{\lambda} - 1) \le e^{p_i (e^{\lambda} - 1)}.$$

So,
$$\mathbb{E}\left[e^{\lambda X}\right] \leq \prod_{i=1}^{n} e^{p_i(e^{\lambda}-1)} = e^{\sum_{i=1}^{n} p_i(e^{\lambda}-1)} = e^{(e^{\lambda}-1)\mu}.$$

For any
$$\lambda > 0$$
,
 $\Pr(X \ge (1+\delta)\mu) = \Pr\left(e^{\lambda X} \ge e^{\lambda(1+\delta)\mu}\right) \le \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda(1+\delta)\mu}}.$

$$\mathbb{E}\left[e^{\lambda X}\right] = \mathbb{E}\left[e^{\lambda \sum_{i=1}^{n} X_{i}}\right] = \mathbb{E}\left[\prod_{i=1}^{n} e^{\lambda X_{i}}\right] = \prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda X_{i}}\right].$$

Let
$$p_i = \Pr(X_i = 1)$$
 for each i . Then,

$$\mathbb{E}\left[e^{\lambda X_i}\right] = p_i e^{\lambda \cdot 1} + (1 - p_i)e^{\lambda \cdot 0} = 1 + p_i(e^{\lambda} - 1) \le e^{p_i(e^{\lambda} - 1)}.$$

So,
$$\mathbb{E}\left[e^{\lambda X}\right] \leq \prod_{i=1}^{n} e^{p_i(e^{\lambda}-1)} = e^{\sum_{i=1}^{n} p_i(e^{\lambda}-1)} = e^{(e^{\lambda}-1)\mu}$$
.

Thus,
$$\Pr(X \ge (1+\delta)\mu) \le \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda(1+\delta)\mu}} \le \frac{e^{(e^{\lambda}-1)\mu}}{e^{\lambda(1+\delta)\mu}} = \left(\frac{e^{(e^{\lambda}-1)}}{e^{\lambda(1+\delta)}}\right)^{\mu}$$
.
Let $\lambda = \ln(1+\delta) > 0$, and the proof ends.

Lower tail bound

Can be proved likewise.

A tentative application

Recall the coin flipping example. By the Chernoff bound,

$$\Pr(X - \frac{n}{2} > \sqrt{n \ln n}) < \frac{e^{\sqrt{n \ln n}}}{\left(1 + 2\sqrt{\frac{\ln n}{n}}\right)^{\left(\frac{n}{2} + \sqrt{n \ln n}\right)}}$$

Even hard to figure out the order.

Is there a more *friendly* form?

Chernoff bounds: a simplified form

Simplified Chernoff bounds for i.i.d. case

Let
$$X = \sum_{i=1}^{n} X_i$$
, where $X'_i s$ are i.i.d. Bernoulli r.v. Let $\mu = \mathbb{E}[X]$. Then $\Pr(|X - \mu| > t) \le e^{-\frac{2t^2}{n}}$ for any $t > 0$.

Simplified Chernoff bounds

Let
$$X = \sum_{i=1}^{n} X_i$$
, where X'_i 's are independent Poisson trials. Let $\mu = \mathbb{E}[X]$,
1. $\Pr(X \ge (1+\delta)\mu) \le e^{-\frac{\delta^2}{2+\delta}\mu}$ for any $\delta > 0$;
2. $\Pr(X \le (1-\delta)\mu) \le e^{-\frac{\delta^2}{2}\mu}$ for any $1 > \delta > 0$.

Application to coin flipping

 $\Pr(X - \frac{n}{2} > \sqrt{n \ln n}) \le n^{-\frac{2}{3}}$. This is exponentially tighter than Chebychev's inequality $\frac{1}{\ln n}$.

Proof and Remarks

Idea of the proof

1.
$$\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} \leq e^{-\frac{\delta^2}{2+\delta}} \Leftrightarrow \delta - (1+\delta)\ln(1+\delta) < -\frac{\delta^2}{2+\delta} \Leftrightarrow \ln(1+\delta) > \frac{2\delta}{2+\delta} \text{ for } \delta > 0.$$

2. Use calculus to show that $\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}} \leq e^{-\frac{\delta^{-}}{2}}$.

Remark 1

When
$$1 > \delta > 0$$
, we have $-\frac{\delta^2}{2+\delta} < -\frac{\delta^2}{3}$, so $\Pr(X \ge (1+\delta)\mu) \le e^{-\frac{\delta^2}{3}\mu}$, and $\Pr(|X-\mu| \ge \delta\mu) \le 2e^{-\frac{\delta^2}{3}\mu}$.

Remark 2

The bound is simpler but looser. Generally, it is outperformed by the basic Chernoff bound. See example.

Minimum-congestion path planning

- G = (V, E) is an undirected graph. $D = \{(s_i, t_i)\}_{i=1}^m \subseteq V^2$.
- Find a path P_i connecting (s_i, t_i) for every i.
- Objective: minimize the congestion max_{e∈E} cong(e), the number of the paths among {P_i}^m_{i=1} that pass e.

This problem is NP-hard. We will give an approximation algorithm based on randomized rounding.

- Model as an integer program
- Relax it into a linear program
- Round the solution
- Analyze the approximation ratio

ILP and its relaxation

Notation

 \mathbb{P}_i : the set of candidate paths connecting s_i and t_i ;

 f_P^i : the indicator of whether we pick path $P \in \mathbb{P}_i$ or not;

C: the congestion in the graph.

Round a solution to the LP

For each i, f_{\cdot}^{i} forms a probability function on \mathbb{P}_{i} , which enables to randomly choose **one** path (say P_{i}) from \mathbb{P}_{i} . Use P_{1}, \dots, P_{m} as an approximate solution to the ILP.

< 17 ▶

Notation

 $\begin{array}{l} C: \text{ optimum congestion of the ILP.} \\ C^*: \text{ optimum congestion of the LP. } C^* \leq C. \\ X^e_i: \text{ indicator of whether } e \in P_i. \\ X^e \triangleq \sum_i X^e_i: \text{ congestion of the edge } e. \\ X \triangleq \max_e X^e: \text{ the network congestion.} \end{array}$

Objective: $Pr(X > (1 + \delta)C)$ is small for a small δ

Note that $X > (1 + \delta)C$ equals $\bigcup_{e \in E} (X^e > (1 + \delta)C)$. By union bound, we just show $\Pr(X^e > (1 + \delta)C) < \frac{1}{n^3}$ for any e.

Apply Chernoff bound to $X^e = \sum_i X_i^e$

Prove
$$\Pr(X^e > (1+\delta)C) < \frac{1}{n^3}$$

Easy facts

$$\begin{split} \mathbb{E}[X_i^e] &= \sum_{e \in P \in \mathbb{P}_i} f_P^i.\\ \mu &= \mathbb{E}[X^e] = \sum_i \mathbb{E}[X_i^e] = \sum_i \sum_{e \in P \in \mathbb{P}_i} f_P^i \le C^* \le C. \end{split}$$

If $C = \omega(\ln n)$, δ can be arbitrarily small

$$\text{Proof: For any } 0 < \delta < 1 \text{, } \Pr(X^e > (1+\delta)C) \le e^{-\frac{\delta^2 C}{2+\delta}} \le \frac{1}{n^3}.$$

If $C = O(\ln n)$, $\delta = \Theta(\ln n)$

Proof:
$$\Pr(X^e > (1+\delta)C) \le e^{-\frac{\delta^2 C}{2+\delta}} \le e^{-\frac{\delta}{2}}$$
 for $\delta \ge 2$.
So, $\Pr(X^e > (1+\delta)C) \le \frac{1}{n^3}$ when $\delta = 6 \ln n$.

If $C = O(\ln n)$, δ can be improved to be $\delta = \Theta\left(\frac{\ln n}{\ln \ln n}\right)$

Proof: By the basic Chernoff bounds,

$$\Pr(X^e > (1+\delta)C) \le \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^C \le \frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}.$$

When $\delta = \Theta\left(\frac{\ln n}{\ln \ln n}\right)$, $(1+\delta)\ln(1+\delta) = \Theta(\ln n)$ and $\delta - (1+\delta)\ln(1+\delta) = \Theta(\ln n)$.

Remarks of the application

Remark 1

It illustrates the practical difference of various Chernoff bounds.

Remark 2

Is it a mistake to use the inaccurate expectation? No! It's a powerful trick.

If $\mu_L \leq \mu \leq \mu_H$, the following bounds hold:

- Upper tail: $\Pr(X \ge (1+\delta)\mu_H) \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu_H}$.
- Lower tail: $\Pr(X \le (1-\delta)\mu_L) \le \left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu_L}$.

Chernoff bounds + Union bound: a paradigm

A high-level picture: Want to upper-bound $\Pr(\text{something bad})$.

- 1. By Union bound, $\Pr(\text{something bad}) \leq \sum_{i=1}^{\text{Large}} \Pr(\text{bad}_i);$
- 2. By Chernoff bounds, $Pr(bad_i) \leq minuscule$ for each *i*;
- 3. $Pr(something bad) \leq Large \times minuscule = small.$

Why the Chernoff bound is better? Note that it's rooted at Markov's Inequality.

Can it be improved by using functions other than exponential?

General bounds for independent sums

Each $X_i \in \{0, a_i\}$ where $a_i \leq 1$

Basic Chernoff bounds remain valid.

Each $X_i \in [0, 1]$ but is not necessarily a Poisson trial

Basic Chernoff bounds remain valid (by $e^{\lambda x} \leq x e^{1\lambda} + (1-x)e^{0\lambda}$).

The domains $[a_i, b_i]$ of X_i 's differ

Hoeffding's Inequality: $\Pr(|X - \mathbb{E}[X]| \ge t) \le 2e^{-\frac{2t^2}{\sum_i (b_i - a_i)^2}}$. Proposed in 1963.

Remarks of Hoeffding's Inequality

1. It considers the absolute, rather than relative, deviation. Particularly useful if $\mu=0.$

2. When each $X_i \in [0, s]$, it is tighter than the simplified basic Chernoff bounds if δ is big, and looser otherwise.

Hoeffding's Inequality

Let $X = \sum_{i=1}^{n} X_i$, where $X_i \in [a_i, b_i]$ are independent r.v. Then $\Pr(|X - \mathbb{E}[X]| \ge t) \le 2e^{-\frac{2t^2}{\sum_i (b_i - a_i)^2}}$ for any t > 0

Idea of the proof

1. Given r.v.
$$Z \in [a, b]$$
 with $\mathbb{E}[Z] = 0$, $\mathbb{E}[e^{\lambda Z}] \le e^{\frac{\lambda^2(b-a)^2}{8}}$ -Hoeffding's Lemma

2.

$$\Pr(X - \mathbb{E}[X] \ge t) \le \frac{\prod_i \mathbb{E}[e^{\lambda(X_i - \mathbb{E}[X_i])}]}{e^{\lambda t}}$$
$$\le e^{\lambda^2 \sum_i \frac{(b_i - a_i)^2}{8} - \lambda t}$$

3. Choose λ to minimize RHS. Likewise for $\Pr(X - \mathbb{E}[X] \leq -t)$.

Proof of Hoeffding's Lemma

Lemma: Given r.v.
$$Z \in [a, b]$$
 with $\mathbb{E}[Z] = 0$, $\mathbb{E}[e^{\lambda Z}] \le e^{\frac{\lambda^2(b-a)^2}{8}}$.

$$e^{\lambda z} \leq \frac{z-a}{b-a}e^{\lambda b} + \frac{b-z}{b-a}e^{\lambda a}$$
, for $z \in [a,b]$

$$\mathbb{E}[e^{\lambda Z}] \leq \frac{be^{\lambda a}}{b-a} - \frac{ae^{\lambda b}}{b-a}$$
$$= (1-\theta+\theta e^u)e^{-\theta u} \quad \text{where } \theta = \frac{-a}{b-a}, u = \lambda(b-a)$$
$$= e^{\phi(u)} \quad \text{where } \phi(u) \triangleq -\theta u + \ln(1-\theta+\theta e^u)$$

Taylor expansion $\phi(u) = \phi(0) + \phi'(0) + \frac{\phi''(\xi)}{2}u^2$. Then $\phi(u) \le \frac{u^2}{8}$ since $\phi(0) = \phi'(0) = 0, \phi''(\xi) \le \frac{1}{4}$

< ロ > < 同 > < 回 > < 回 >

Set balancing

Given a matrix $A\in\{0,1\}^{n\times m},$ find $b\in\{-1,1\}^m$ s.t. $\parallel Ab\parallel_{\infty}$ is minimized.

Motivation								
feature 1:	$\begin{bmatrix} a_{11} \end{bmatrix}$	a_{12}		a_{1m}				
feature 2:	a_{21}	a_{22}		a_{2m}				
:	:	:		:	, each column is an object.			
feature <i>n</i> :	a_{n1}	a_{n2}		a_{nm}				
Want to partition the objects so that every feature is balanced.								

Set balancing

Given a matrix $A\in\{0,1\}^{n\times m},$ find $b\in\{-1,1\}^m$ s.t. $\parallel Ab\parallel_{\infty}$ is minimized.

Motivation								
feature 1:	$\begin{bmatrix} a_{11} \end{bmatrix}$	a_{12}		a_{1m}				
feature 2:	a_{21}	a_{22}		a_{2m}				
:	:	:	·	:	, each column is an object.			
feature n:	a_{n1}	a_{n2}		a_{nm}				
Want to partition the objects so that every feature is balanced.								

Algorithm

Uniformly randomly sample b.

Performance analysis

Performance

 $\Pr(\parallel Ab \parallel_{\infty} \ge \sqrt{4m\ln n}) \le \frac{2}{n}$

Proof

For any $1 \le i \le n$, $Z_i = \sum_j a_{ij}b_j$ is the *i*th entry of Ab. By union bound, it suffices to prove $\Pr(|Z_i| \ge \sqrt{4m \ln n}) \le \frac{2}{n^2}$ for each *i*.

Fix *i*. W.l.o.g, assume $a_{ij} = 1$ iff $1 \le j \le k$ for some $k \le m$. Then $Z_i = b_1 + \ldots + b_k$.

Note that b_j 's are independent over $\{-1, 1\}$ with $\mathbb{E}[b_j] = 0$.

By Hoeffding's Inequality, $\Pr(|Z_i| \ge \sqrt{4m \ln n}) \le 2e^{-\frac{8m \ln n}{4k}} \le \frac{2}{n^2}$

Bernstein Inequality (Bernstein, 1911)

Let $X = \sum_{i=1}^{n} X_i$, where X_i 's are independent r.v satisfying $\mathbb{E}[X_i] = 0$, $\mathbb{E}[X_i^2] \le b_i$, $\mathbb{E}[|X_i|^k] \le \frac{b_i}{2} H^{k-2} k!$ for k > 2. Then $\Pr(|X| \ge t) \le 2e^{-\frac{t^2}{2(Ht + \sum_{i=1}^{n} b_i)}}$ for any t > 0

• Extended to dependent or multi-dimensional variables

McDiarmid Inequality (McDiarmid, 1989)

Let X_1, \dots, X_n be independent r.v. and $f(\cdot)$ is an *n*-ary function with bounded differences c_1, \dots, c_n . Let $Y = f(X_1, \dots, X_n)$. Then $\Pr(|Y - \mathbb{E}[Y]| \ge t) \le 2e^{-\frac{2t^2}{\sum_{i=1}^n c_i^2}}$ for any t > 0

• Extended to (quantitative and qualitative) dependence

Chernoff Bounds

Why is it so good? Can it be improved by non-exponential functions? Anything to do with moments?

Moments

Do moments uniquely determine the distribution?