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Preface

Questions, comments, or suggestions?
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A brief review

Moments

Expectation, k-moment, variance

Inequalities

Universal: Union bound
1-moment: Markov’s inequality
2-moment: Chebychev’s inequality

Applications to Coupon Collector’s Problem

E[X] = nH(n) ≈ n lnn ≈ 30� 200 when n = 12.
Markov’s inequality: Pr(X > 200) < 1/6.
Chebychev’s inequality: Pr(X > 200) < 0.01.
Union bound: Pr(X > 200) < 0.00001.
The more information you have, the better bounds you get.
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Chernoff bounds: inequalities of independent sum

Motiving Example

Flip a fair coin for n trials. Let X be the number of Heads, which
is around the expectation n

2 . How about its concentration?

Markov’s inequality: Pr(X − n
2 >
√
n lnn) < n

n+2
√
n lnn

 1

Chebyshev’s inequality: Pr(X − n
2 >
√
n lnn) < 1

lnn

Can we do better?

Due to independent sum: X =
∑n

i=1Xi

YES!
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Chernoff bounds: basic form

Chernoff bounds

Let X =
∑n

i=1Xi, where X ′is are independent Poisson trials. Let
µ = E[X]. Then

1. For any δ > 0, Pr(X ≥ (1 + δ)µ) ≤
(

eδ

(1+δ)(1+δ)

)µ
.

2. For any 1 > δ > 0, Pr(X ≤ (1− δ)µ) ≤
(

e−δ

(1−δ)(1−δ)

)µ
.

Remarks

Note that 0 < eδ

(1+δ)(1+δ)
< 1 when δ > 0.

The bound in 1 exponentially deceases w.r.t. µ!
And so is the bound in 2.
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Proof of the upper tail bound

For any λ > 0,

Pr(X ≥ (1 + δ)µ) = Pr
(
eλX ≥ eλ(1+δ)µ

)
≤ E[eλX ]

eλ(1+δ)µ
.

E
[
eλX

]
= E

[
eλ

∑n
i=1Xi

]
= E

[∏n
i=1 e

λXi
]

=
∏n
i=1 E

[
eλXi

]
.

Let pi = Pr(Xi = 1) for each i. Then,

E
[
eλXi

]
= pie

λ·1 + (1− pi)eλ·0 = 1 + pi(e
λ − 1) ≤ epi(eλ−1).

So, E
[
eλX

]
≤
∏n
i=1 e

pi(e
λ−1) = e

∑n
i=1 pi(e

λ−1) = e(e
λ−1)µ.

Thus, Pr(X ≥ (1 + δ)µ) ≤ E[eλX ]
eλ(1+δ)µ

≤ e(e
λ−1)µ

eλ(1+δ)µ
=

(
e(e

λ−1)

eλ(1+δ)

)µ
.

Let λ = ln(1 + δ) > 0, and the proof ends.
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Lower tail bound and application

Lower tail bound

Can be proved likewise.

A tentative application

Recall the coin flipping example. By the Chernoff bound,

Pr(X − n

2
>
√
n lnn) <

e
√
n lnn(

1 + 2
√

lnn
n

)(n2+
√
n lnn)

Even hard to figure out the order.

Is there a more friendly form?
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Chernoff bounds: a simplified form

Simplified Chernoff bounds for i.i.d. case

Let X =
∑n

i=1Xi, where X ′is are i.i.d. Bernoulli r.v. Let

µ = E[X]. Then Pr(|X − µ| > t) ≤ e−
2t2

n for any t > 0.

Simplified Chernoff bounds

Let X =
∑n

i=1Xi, where X ′is are independent Poisson trials. Let
µ = E[X],

1. Pr(X ≥ (1 + δ)µ) ≤ e−
δ2

2+δ
µ for any δ > 0;

2. Pr(X ≤ (1− δ)µ) ≤ e−
δ2

2
µ for any 1 > δ > 0.

Application to coin flipping

Pr(X − n
2 >
√
n lnn) ≤ n−

2
3 . This is exponentially tighter than

Chebychev’s inequality 1
lnn .
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Proof and Remarks

Idea of the proof

1. eδ

(1+δ)(1+δ)
≤ e−

δ2

2+δ ⇔ δ − (1 + δ) ln(1 + δ) < − δ2

2+δ ⇐
ln(1 + δ) > 2δ

2+δ for δ > 0.

2. Use calculus to show that e−δ

(1−δ)(1−δ) ≤ e
− δ

2

2 .

Remark 1

When 1 > δ > 0, we have − δ2

2+δ < −
δ2

3 , so

Pr(X ≥ (1 + δ)µ) ≤ e−
δ2

3
µ, and Pr(|X − µ| ≥ δµ) ≤ 2e−

δ2

3
µ.

Remark 2

The bound is simpler but looser. Generally, it is outperformed by
the basic Chernoff bound. See example.
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Example: random rounding

Minimum-congestion path planning

G = (V,E) is an undirected graph. D = {(si, ti)}mi=1 ⊆ V 2.

Find a path Pi connecting (si, ti) for every i.

Objective: minimize the congestion maxe∈E cong(e), the
number of the paths among {Pi}mi=1 that pass e.

This problem is NP-hard. We will give an approximation algorithm
based on randomized rounding.

Model as an integer program

Relax it into a linear program

Round the solution

Analyze the approximation ratio
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ILP and its relaxation

Notation

Pi: the set of candidate paths connecting si and ti;
f iP : the indicator of whether we pick path P ∈ Pi or not;
C: the congestion in the graph.

ILP LP
Min C Min C
s.t.
∑

P∈Pi f
i
P = 1,∀i s.t.

∑
P∈Pi f

i
P = 1,∀i∑

i

∑
e∈P∈Pi f

i
P ≤ C,∀e ⇒

∑
i

∑
e∈P∈Pi f

i
P ≤ C,∀e

f iP ∈ {0, 1}, ∀i, P f iP ∈ [0, 1],∀i, P

Round a solution to the LP

For each i, f i· forms a probability function on Pi, which enables to
randomly choose one path (say Pi) from Pi.
Use P1, · · · , Pm as an approximate solution to the ILP.
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Approximation ratio

Notation

C: optimum congestion of the ILP.
C∗: optimum congestion of the LP. C∗ ≤ C.
Xe
i : indicator of whether e ∈ Pi.

Xe ,
∑

iX
e
i : congestion of the edge e.

X , maxeX
e: the network congestion.

Objective: Pr(X > (1 + δ)C) is small for a small δ

Note that X > (1 + δ)C equals
⋃
e∈E(Xe > (1 + δ)C).

By union bound, we just show Pr(Xe > (1 + δ)C) < 1
n3 for any e.

Apply Chernoff bound to Xe =
∑

iX
e
i
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Prove Pr(Xe > (1 + δ)C) < 1
n3

Easy facts

E[Xe
i ] =

∑
e∈P∈Pi f

i
P .

µ = E[Xe] =
∑

i E[Xe
i ] =

∑
i

∑
e∈P∈Pi f

i
P ≤ C∗ ≤ C.

If C = ω(lnn), δ can be arbitrarily small

Proof: For any 0 < δ < 1, Pr(Xe > (1 + δ)C) ≤ e−
δ2C
2+δ ≤ 1

n3 .

If C = O(lnn), δ = Θ(lnn)

Proof: Pr(Xe > (1 + δ)C) ≤ e−
δ2C
2+δ ≤ e−

δ
2 for δ ≥ 2.

So, Pr(Xe > (1 + δ)C) ≤ 1
n3 when δ = 6 lnn.
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Prove Pr(Xe > (1 + δ)C) < 1
n3

If C = O(lnn), δ can be improved to be δ = Θ
(

lnn
ln lnn

)
Proof: By the basic Chernoff bounds,

Pr(Xe > (1 + δ)C) ≤
[

eδ

(1 + δ)(1+δ)

]C
≤ eδ

(1 + δ)(1+δ)
.

When δ = Θ
(

lnn
ln lnn

)
, (1 + δ) ln(1 + δ) = Θ(lnn) and

δ − (1 + δ) ln(1 + δ) = Θ(lnn).

14 / 23



Remarks of the application

Remark 1

It illustrates the practical difference of various Chernoff bounds.

Remark 2

Is it a mistake to use the inaccurate expectation?
No! It’s a powerful trick.
If µL ≤ µ ≤ µH , the following bounds hold:

Upper tail: Pr(X ≥ (1 + δ)µH) ≤
(

eδ

(1+δ)(1+δ)

)µH
.

Lower tail: Pr(X ≤ (1− δ)µL) ≤
(

e−δ

(1−δ)(1−δ)

)µL
.

Chernoff bounds + Union bound: a paradigm

A high-level picture: Want to upper-bound Pr(something bad).
1. By Union bound, Pr(something bad) ≤

∑Large
i=1 Pr(badi);

2. By Chernoff bounds, Pr(badi) ≤ minuscule for each i;
3. Pr(something bad) ≤ Large×minuscule = small.
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Questions

Why the Chernoff bound is better? Note that
it’s rooted at Markov’s Inequality.

Can it be improved by using functions other
than exponential?
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General bounds for independent sums

Each Xi ∈ {0, ai} where ai ≤ 1

Basic Chernoff bounds remain valid.

Each Xi ∈ [0, 1] but is not necessarily a Poisson trial

Basic Chernoff bounds remain valid (by eλx ≤ xe1λ + (1− x)e0λ).

The domains [ai, bi] of Xi’s differ

Hoeffding’s Inequality: Pr(|X − E[X]| ≥ t) ≤ 2e
− 2t2∑

i(bi−ai)2 .
Proposed in 1963.

Remarks of Hoeffding’s Inequality

1. It considers the absolute, rather than relative, deviation.
Particularly useful if µ = 0.
2. When each Xi ∈ [0, s], it is tighter than the simplified basic
Chernoff bounds if δ is big, and looser otherwise.
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Hoeffding’s Inequality

Let X =
∑n

i=1Xi, where Xi ∈ [ai, bi] are independent r.v. Then

Pr(|X − E[X]| ≥ t) ≤ 2e
− 2t2∑

i(bi−ai)2 for any t > 0

Idea of the proof

1. Given r.v. Z ∈ [a, b] with E[Z] = 0, E[eλZ ] ≤ e
λ2(b−a)2

8

-Hoeffding’s Lemma
2.

Pr(X − E[X] ≥ t) ≤
∏
i E[eλ(Xi−E[Xi])]

eλt

≤ eλ2
∑
i
(bi−ai)

2

8
−λt

3. Choose λ to minimize RHS. Likewise for Pr(X − E[X] ≤ −t).
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Proof of Hoeffding’s Lemma

Lemma: Given r.v. Z ∈ [a, b] with E[Z] = 0, E[eλZ ] ≤ e
λ2(b−a)2

8 .

eλz ≤ z−a
b−ae

λb + b−z
b−ae

λa, for z ∈ [a, b]

E[eλZ ] ≤ beλa

b− a
− aeλb

b− a

= (1− θ + θeu)e−θu where θ =
−a
b− a

, u = λ(b− a)

= eφ(u) where φ(u) , −θu+ ln(1− θ + θeu)

Taylor expansion φ(u) = φ(0) + φ′(0) + φ′′(ξ)
2 u2.

Then φ(u) ≤ u2

8 since φ(0) = φ′(0) = 0, φ′′(ξ) ≤ 1
4
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Example: Hoeffding’s Inequality + Union bound

Set balancing

Given a matrix A ∈ {0, 1}n×m, find b ∈ {−1, 1}m s.t. ‖ Ab ‖∞ is
minimized.

Motivation

feature 1:
feature 2:

...
feature n:


a11 a12 · · · a1m
a21 a22 · · · a2m

...
...

. . .
...

an1 an2 · · · anm

, each column is an object.

Want to partition the objects so that every feature is balanced.

Algorithm

Uniformly randomly sample b.
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Performance analysis

Performance

Pr(‖ Ab ‖∞≥
√

4m lnn) ≤ 2
n

Proof

For any 1 ≤ i ≤ n, Zi =
∑

j aijbj is the ith entry of Ab. By union

bound, it suffices to prove Pr(|Zi| ≥
√

4m lnn) ≤ 2
n2 for each i.

Fix i. W.l.o.g, assume aij = 1 iff 1 ≤ j ≤ k for some k ≤ m. Then
Zi = b1 + ...+ bk.

Note that bj ’s are independent over {−1, 1} with E[bj ] = 0.

By Hoeffding’s Inequality, Pr(|Zi| ≥
√

4m lnn) ≤ 2e−
8m lnn

4k ≤ 2
n2
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Concentration Inequalities: higher order and beyond sum

Bernstein Inequality (Bernstein, 1911)

Let X =
∑n

i=1Xi, where Xi’s are independent r.v satisfying
E[Xi] = 0, E[X2

i ] ≤ bi, E[|Xi|k] ≤ bi
2H

k−2k! for k > 2. Then

Pr(|X| ≥ t) ≤ 2e
− t2

2(Ht+
∑n
i=1

bi) for any t > 0

Extended to dependent or multi-dimensional variables

McDiarmid Inequality (McDiarmid, 1989)

Let X1, · · · , Xn be independent r.v. and f(·) is an n-ary function
with bounded differences c1, · · · , cn. Let Y = f(X1, · · · , Xn).

Then Pr(|Y − E[Y ]| ≥ t) ≤ 2e
− 2t2∑n

i=1
c2
i for any t > 0

Extended to (quantitative and qualitative) dependence
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Reflection on moments and Chernoff bounds

Chernoff Bounds

Why is it so good?
Can it be improved by non-exponential functions?
Anything to do with moments?

Moments

Do moments uniquely determine the distribution?
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