Probabilistic Method and Random Graphs

Lecture 3. Chernoff bounds: behind and beyond

Xingwu Liu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

Preface

Questions, comments, or suggestions?

A brief review

Moments

Expectation, k-moment, variance

Inequalities

Universal: Union bound
1-moment: Markov's inequality
2-moment: Chebychev's inequality

Applications to Coupon Collector's Problem

$\mathbb{E}[X]=n H(n) \approx n \ln n \approx 30 \ll 200$ when $n=12$.
Markov's inequality: $\operatorname{Pr}(X>200)<1 / 6$.
Chebychev's inequality: $\operatorname{Pr}(X>200)<0.01$.
Union bound: $\operatorname{Pr}(X>200)<0.00001$.
The more information you have, the better bounds you get.

Chernoff bounds: inequalities of independent sum

Motiving Example

Flip a fair coin for n trials. Let X be the number of Heads, which is around the expectation $\frac{n}{2}$. How about its concentration?

- Markov's inequality: $\operatorname{Pr}\left(X-\frac{n}{2}>\sqrt{n \ln n}\right)<\frac{n}{n+2 \sqrt{n \ln n}} \rightsquigarrow 1$
- Chebyshev's inequality: $\operatorname{Pr}\left(X-\frac{n}{2}>\sqrt{n \ln n}\right)<\frac{1}{\ln n}$
- Can we do better?
- Due to independent sum: $X=\sum_{i=1}^{n} X_{i}$
- YES!

Chernoff bounds: basic form

Chernoff bounds

Let $X=\sum_{i=1}^{n} X_{i}$, where $X_{i}^{\prime} s$ are independent Poisson trials. Let $\mu=\mathbb{E}[X]$. Then

1. For any $\delta>0, \operatorname{Pr}(X \geq(1+\delta) \mu) \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}$.
2. For any $1>\delta>0, \operatorname{Pr}(X \leq(1-\delta) \mu) \leq\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}$.

Remarks

Note that $0<\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}<1$ when $\delta>0$.
The bound in 1 exponentially deceases w.r.t. μ !
And so is the bound in 2 .

Proof of the upper tail bound

For any $\lambda>0$,
$\operatorname{Pr}(X \geq(1+\delta) \mu)=\operatorname{Pr}\left(e^{\lambda X} \geq e^{\lambda(1+\delta) \mu}\right) \leq \frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda(1+\delta) \mu}}$.

Proof of the upper tail bound

For any $\lambda>0$,

$$
\operatorname{Pr}(X \geq(1+\delta) \mu)=\operatorname{Pr}\left(e^{\lambda X} \geq e^{\lambda(1+\delta) \mu}\right) \leq \frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda(1+\delta) \mu}}
$$

$$
\mathbb{E}\left[e^{\lambda X}\right]=\mathbb{E}\left[e^{\lambda \sum_{i=1}^{n} X_{i}}\right]=\mathbb{E}\left[\prod_{i=1}^{n} e^{\lambda X_{i}}\right]=\prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda X_{i}}\right]
$$

Proof of the upper tail bound

For any $\lambda>0$,
$\operatorname{Pr}(X \geq(1+\delta) \mu)=\operatorname{Pr}\left(e^{\lambda X} \geq e^{\lambda(1+\delta) \mu}\right) \leq \frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda(1+\delta) \mu}}$.

$$
\mathbb{E}\left[e^{\lambda X}\right]=\mathbb{E}\left[e^{\lambda \sum_{i=1}^{n} X_{i}}\right]=\mathbb{E}\left[\prod_{i=1}^{n} e^{\lambda X_{i}}\right]=\prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda X_{i}}\right]
$$

Let $p_{i}=\operatorname{Pr}\left(X_{i}=1\right)$ for each i. Then, $\mathbb{E}\left[e^{\lambda X_{i}}\right]=p_{i} e^{\lambda \cdot 1}+\left(1-p_{i}\right) e^{\lambda \cdot 0}=1+p_{i}\left(e^{\lambda}-1\right) \leq e^{p_{i}\left(e^{\lambda}-1\right)}$.

Proof of the upper tail bound

For any $\lambda>0$,
$\operatorname{Pr}(X \geq(1+\delta) \mu)=\operatorname{Pr}\left(e^{\lambda X} \geq e^{\lambda(1+\delta) \mu}\right) \leq \frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda(1+\delta) \mu}}$.

$$
\mathbb{E}\left[e^{\lambda X}\right]=\mathbb{E}\left[e^{\lambda \sum_{i=1}^{n} X_{i}}\right]=\mathbb{E}\left[\prod_{i=1}^{n} e^{\lambda X_{i}}\right]=\prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda X_{i}}\right]
$$

Let $p_{i}=\operatorname{Pr}\left(X_{i}=1\right)$ for each i. Then, $\mathbb{E}\left[e^{\lambda X_{i}}\right]=p_{i} e^{\lambda \cdot 1}+\left(1-p_{i}\right) e^{\lambda \cdot 0}=1+p_{i}\left(e^{\lambda}-1\right) \leq e^{p_{i}\left(e^{\lambda}-1\right)}$.

So, $\mathbb{E}\left[e^{\lambda X}\right] \leq \prod_{i=1}^{n} e^{p_{i}\left(e^{\lambda}-1\right)}=e^{\sum_{i=1}^{n} p_{i}\left(e^{\lambda}-1\right)}=e^{\left(e^{\lambda}-1\right) \mu}$.

Proof of the upper tail bound

For any $\lambda>0$,
$\operatorname{Pr}(X \geq(1+\delta) \mu)=\operatorname{Pr}\left(e^{\lambda X} \geq e^{\lambda(1+\delta) \mu}\right) \leq \frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda(1+\delta) \mu}}$.

$$
\mathbb{E}\left[e^{\lambda X}\right]=\mathbb{E}\left[e^{\lambda \sum_{i=1}^{n} X_{i}}\right]=\mathbb{E}\left[\prod_{i=1}^{n} e^{\lambda X_{i}}\right]=\prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda X_{i}}\right]
$$

Let $p_{i}=\operatorname{Pr}\left(X_{i}=1\right)$ for each i. Then, $\mathbb{E}\left[e^{\lambda X_{i}}\right]=p_{i} e^{\lambda \cdot 1}+\left(1-p_{i}\right) e^{\lambda \cdot 0}=1+p_{i}\left(e^{\lambda}-1\right) \leq e^{p_{i}\left(e^{\lambda}-1\right)}$.

So, $\mathbb{E}\left[e^{\lambda X}\right] \leq \prod_{i=1}^{n} e^{p_{i}\left(e^{\lambda}-1\right)}=e^{\sum_{i=1}^{n} p_{i}\left(e^{\lambda}-1\right)}=e^{\left(e^{\lambda}-1\right) \mu}$.

Thus, $\operatorname{Pr}(X \geq(1+\delta) \mu) \leq \frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda(1+\delta) \mu}} \leq \frac{e^{\left(e^{\lambda}-1\right) \mu}}{e^{\lambda(1+\delta) \mu}}=\left(\frac{e^{\left(e^{\lambda}-1\right)}}{e^{\lambda(1+\delta)}}\right)^{\mu}$. Let $\lambda=\ln (1+\delta)>0$, and the proof ends.

Lower tail bound and application

Lower tail bound

Can be proved likewise.

A tentative application

Recall the coin flipping example. By the Chernoff bound,

$$
\operatorname{Pr}\left(X-\frac{n}{2}>\sqrt{n \ln n}\right)<\frac{e^{\sqrt{n \ln n}}}{\left(1+2 \sqrt{\frac{\ln n}{n}}\right)^{\left(\frac{n}{2}+\sqrt{n \ln n}\right)}}
$$

Even hard to figure out the order.

Is there a more friendly form?

Chernoff bounds: a simplified form

Simplified Chernoff bounds for i.i.d. case

Let $X=\sum_{i=1}^{n} X_{i}$, where $X_{i}^{\prime} s$ are i.i.d. Bernoulli r.v. Let $\mu=\mathbb{E}[X]$. Then $\operatorname{Pr}(|X-\mu|>t) \leq e^{-\frac{2 t^{2}}{n}}$ for any $t>0$.

Simplified Chernoff bounds

Let $X=\sum_{i=1}^{n} X_{i}$, where $X_{i}^{\prime} s$ are independent Poisson trials. Let $\mu=\mathbb{E}[X]$,

1. $\operatorname{Pr}(X \geq(1+\delta) \mu) \leq e^{-\frac{\delta^{2}}{2+\delta} \mu}$ for any $\delta>0$;
2. $\operatorname{Pr}(X \leq(1-\delta) \mu) \leq e^{-\frac{\delta^{2}}{2} \mu}$ for any $1>\delta>0$.

Application to coin flipping
$\operatorname{Pr}\left(X-\frac{n}{2}>\sqrt{n \ln n}\right) \leq n^{-\frac{2}{3}}$. This is exponentially tighter than Chebychev's inequality $\frac{1}{\ln n}$.

Proof and Remarks

Idea of the proof

1. $\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} \leq e^{-\frac{\delta^{2}}{2+\delta}} \Leftrightarrow \delta-(1+\delta) \ln (1+\delta)<-\frac{\delta^{2}}{2+\delta} \Leftarrow$ $\ln (1+\delta)>\frac{2 \delta}{2+\delta}$ for $\delta>0$.
2. Use calculus to show that $\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}} \leq e^{-\frac{\delta^{2}}{2}}$.

Remark 1

When $1>\delta>0$, we have $-\frac{\delta^{2}}{2+\delta}<-\frac{\delta^{2}}{3}$, so
$\operatorname{Pr}(X \geq(1+\delta) \mu) \leq e^{-\frac{\delta^{2}}{3} \mu}$, and $\operatorname{Pr}(|X-\mu| \geq \delta \mu) \leq 2 e^{-\frac{\delta^{2}}{3} \mu}$.

Remark 2

The bound is simpler but looser. Generally, it is outperformed by the basic Chernoff bound. See example.

Example: random rounding

Minimum-congestion path planning

- $G=(V, E)$ is an undirected graph. $D=\left\{\left(s_{i}, t_{i}\right)\right\}_{i=1}^{m} \subseteq V^{2}$.
- Find a path P_{i} connecting $\left(s_{i}, t_{i}\right)$ for every i.
- Objective: minimize the congestion $\max _{e \in E} \operatorname{cong}(e)$, the number of the paths among $\left\{P_{i}\right\}_{i=1}^{m}$ that pass e.

This problem is NP-hard. We will give an approximation algorithm based on randomized rounding.

- Model as an integer program
- Relax it into a linear program
- Round the solution
- Analyze the approximation ratio

ILP and its relaxation

Notation

\mathbb{P}_{i} : the set of candidate paths connecting s_{i} and t_{i};
f_{P}^{i} : the indicator of whether we pick path $P \in \mathbb{P}_{i}$ or not;
C : the congestion in the graph.

ILP

$\operatorname{Min} C$

$$
\begin{aligned}
& \text { s.t. } \sum_{P \in \mathbb{P}_{i}} f_{P}^{i}=1, \forall i \\
& \\
& \quad \sum_{i} i \sum_{e \in P \in \mathbb{P}_{i}} f_{P}^{i} \leq C, \forall e \Rightarrow \\
& \quad f_{P}^{i} \in\{0,1\}, \forall i, P
\end{aligned}
$$

LP

$\operatorname{Min} C$

$$
\begin{aligned}
& \text { s.t. } \sum_{P \in \mathbb{P}_{i}} f_{P}^{i}=1, \forall i \\
& \quad \sum_{i} \sum_{e \in P \in \mathbb{P}_{i}}^{i} f_{P}^{i} \leq C, \forall e \\
& \quad \underline{f_{P}^{i} \in[0,1], \forall i, P}
\end{aligned}
$$

Round a solution to the LP

For each i, f^{i} forms a probability function on \mathbb{P}_{i}, which enables to randomly choose one path (say P_{i}) from \mathbb{P}_{i}. Use P_{1}, \cdots, P_{m} as an approximate solution to the ILP.

Approximation ratio

Notation

C : optimum congestion of the ILP.
C^{*} : optimum congestion of the LP. $C^{*} \leq C$.
X_{i}^{e} : indicator of whether $e \in P_{i}$.
$X^{e} \triangleq \sum_{i} X_{i}^{e}$: congestion of the edge e.
$X \triangleq \max _{e} X^{e}$: the network congestion.

Objective: $\operatorname{Pr}(X>(1+\delta) C)$ is small for a small δ

Note that $X>(1+\delta) C$ equals $\bigcup_{e \in E}\left(X^{e}>(1+\delta) C\right)$.
By union bound, we just show $\operatorname{Pr}\left(X^{e}>(1+\delta) C\right)<\frac{1}{n^{3}}$ for any e.

Apply Chernoff bound to $X^{e}=\sum_{i} X_{i}^{e}$

Prove $\operatorname{Pr}\left(X^{e}>(1+\delta) C\right)<\frac{1}{n^{3}}$

Easy facts

$$
\begin{aligned}
& \mathbb{E}\left[X_{i}^{e}\right]=\sum_{e \in P \in \mathbb{P}_{i}} f_{P}^{i} \\
& \mu=\mathbb{E}\left[X^{e}\right]=\sum_{i} \mathbb{E}\left[X_{i}^{e}\right]=\sum_{i} \sum_{e \in P \in \mathbb{P}_{i}} f_{P}^{i} \leq C^{*} \leq C
\end{aligned}
$$

If $C=\omega(\ln n), \delta$ can be arbitrarily small
Proof: For any $0<\delta<1, \operatorname{Pr}\left(X^{e}>(1+\delta) C\right) \leq e^{-\frac{\delta^{2} C}{2+\delta}} \leq \frac{1}{n^{3}}$.

$$
\text { If } C=O(\ln n), \delta=\Theta(\ln n)
$$

Proof: $\operatorname{Pr}\left(X^{e}>(1+\delta) C\right) \leq e^{-\frac{\delta^{2} C}{2+\delta}} \leq e^{-\frac{\delta}{2}}$ for $\delta \geq 2$.
So, $\operatorname{Pr}\left(X^{e}>(1+\delta) C\right) \leq \frac{1}{n^{3}}$ when $\delta=6 \ln n$.

Prove $\operatorname{Pr}\left(X^{e}>(1+\delta) C\right)<\frac{1}{n^{3}}$

If $C=O(\ln n), \delta$ can be improved to be $\delta=\Theta\left(\frac{\ln n}{\ln \ln n}\right)$
Proof: By the basic Chernoff bounds,

$$
\operatorname{Pr}\left(X^{e}>(1+\delta) C\right) \leq\left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{C} \leq \frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}
$$

When $\delta=\Theta\left(\frac{\ln n}{\ln \ln n}\right),(1+\delta) \ln (1+\delta)=\Theta(\ln n)$ and $\delta-(1+\delta) \ln (1+\delta)=\Theta(\ln n)$.

Remarks of the application

Remark 1

It illustrates the practical difference of various Chernoff bounds.

Remark 2

Is it a mistake to use the inaccurate expectation?
No! It's a powerful trick.
If $\mu_{L} \leq \mu \leq \mu_{H}$, the following bounds hold:

- Upper tail: $\operatorname{Pr}\left(X \geq(1+\delta) \mu_{H}\right) \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu_{H}}$.
- Lower tail: $\operatorname{Pr}\left(X \leq(1-\delta) \mu_{L}\right) \leq\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu_{L}}$.

Chernoff bounds + Union bound: a paradigm

A high-level picture: Want to upper-bound Pr (something bad).

1. By Union bound, $\operatorname{Pr}($ something bad $) \leq \sum_{i=1}^{\text {Large }} \operatorname{Pr}\left(\operatorname{bad}_{i}\right)$;
2. By Chernoff bounds, $\operatorname{Pr}\left(\operatorname{bad}_{i}\right) \leq$ minuscule for each i;
3. $\operatorname{Pr}($ something bad $) \leq$ Large \times minuscule $=$ small.

Questions

Why the Chernoff bound is better? Note that it's rooted at Markov's Inequality.

Can it be improved by using functions other than exponential?

General bounds for independent sums

Each $X_{i} \in\left\{0, a_{i}\right\}$ where $a_{i} \leq 1$
Basic Chernoff bounds remain valid.

Each $X_{i} \in[0,1]$ but is not necessarily a Poisson trial
Basic Chernoff bounds remain valid (by $e^{\lambda x} \leq x e^{1 \lambda}+(1-x) e^{0 \lambda}$).
The domains $\left[a_{i}, b_{i}\right]$ of X_{i} 's differ
Hoeffding's Inequality: $\operatorname{Pr}(|X-\mathbb{E}[X]| \geq t) \leq 2 e^{-\frac{2 t^{2}}{\sum_{i}\left(b_{i}-a_{i}\right)^{2}}}$. Proposed in 1963.

Remarks of Hoeffding's Inequality

1. It considers the absolute, rather than relative, deviation.

Particularly useful if $\mu=0$.
2. When each $X_{i} \in[0, s]$, it is tighter than the simplified basic

Chernoff bounds if δ is big, and looser otherwise.

Hoeffding's Inequality

Let $X=\sum_{i=1}^{n} X_{i}$, where $X_{i} \in\left[a_{i}, b_{i}\right]$ are independent r.v. Then
$\operatorname{Pr}(|X-\mathbb{E}[X]| \geq t) \leq 2 e^{-\frac{2 t^{2}}{\sum_{i}\left(b_{i}-a_{i}\right)^{2}}}$ for any $t>0$

Idea of the proof

1. Given r.v. $Z \in[a, b]$ with $\mathbb{E}[Z]=0, \mathbb{E}\left[e^{\lambda Z}\right] \leq e^{\frac{\lambda^{2}(b-a)^{2}}{8}}$ -Hoeffding's Lemma
2.

$$
\begin{aligned}
\operatorname{Pr}(X-\mathbb{E}[X] \geq t) & \leq \frac{\prod_{i} \mathbb{E}\left[e^{\lambda\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right)}\right]}{e^{\lambda t}} \\
& \leq e^{\lambda^{2} \sum_{i} \frac{\left(b_{i}-a_{i}\right)^{2}}{8}-\lambda t}
\end{aligned}
$$

3. Choose λ to minimize RHS. Likewise for $\operatorname{Pr}(X-\mathbb{E}[X] \leq-t)$.

Proof of Hoeffding's Lemma

Lemma: Given r.v. $Z \in[a, b]$ with $\mathbb{E}[Z]=0, \mathbb{E}\left[e^{\lambda Z}\right] \leq e^{\frac{\lambda^{2}(b-a)^{2}}{8}}$.

$$
e^{\lambda z} \leq \frac{z-a}{b-a} e^{\lambda b}+\frac{b-z}{b-a} e^{\lambda a}, \text { for } z \in[a, b]
$$

$$
\begin{aligned}
\mathbb{E}\left[e^{\lambda Z}\right] & \leq \frac{b e^{\lambda a}}{b-a}-\frac{a e^{\lambda b}}{b-a} \\
& =\left(1-\theta+\theta e^{u}\right) e^{-\theta u} \quad \text { where } \theta=\frac{-a}{b-a}, u=\lambda(b-a) \\
& =e^{\phi(u)} \quad \text { where } \phi(u) \triangleq-\theta u+\ln \left(1-\theta+\theta e^{u}\right)
\end{aligned}
$$

Taylor expansion $\phi(u)=\phi(0)+\phi^{\prime}(0)+\frac{\phi^{\prime \prime}(\xi)}{2} u^{2}$.
Then $\phi(u) \leq \frac{u^{2}}{8}$ since $\phi(0)=\phi^{\prime}(0)=0, \phi^{\prime \prime}(\xi) \leq \frac{1}{4}$

Example: Hoeffding's Inequality + Union bound

Set balancing

Given a matrix $A \in\{0,1\}^{n \times m}$, find $b \in\{-1,1\}^{m}$ s.t. $\|A b\|_{\infty}$ is minimized.

Motivation
feature 1:
feature 2:
$\quad \vdots$
feature $n:$$\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 m} \\ a_{21} & a_{22} & \cdots & a_{2 m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n m}\end{array}\right]$, each column is an object.

Want to partition the objects so that every feature is balanced.

Example: Hoeffding's Inequality + Union bound

Set balancing

Given a matrix $A \in\{0,1\}^{n \times m}$, find $b \in\{-1,1\}^{m}$ s.t. $\|A b\|_{\infty}$ is minimized.

Motivation

feature 1:
feature 2:
\vdots
feature $n:$$\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 m} \\ a_{21} & a_{22} & \cdots & a_{2 m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n m}\end{array}\right]$, each column is an object.

Want to partition the objects so that every feature is balanced.

Algorithm

Uniformly randomly sample b.

Performance analysis

Performance

$\operatorname{Pr}\left(\|A b\|_{\infty} \geq \sqrt{4 m \ln n}\right) \leq \frac{2}{n}$

Proof

For any $1 \leq i \leq n, Z_{i}=\sum_{j} a_{i j} b_{j}$ is the i th entry of $A b$. By union bound, it suffices to prove $\operatorname{Pr}\left(\left|Z_{i}\right| \geq \sqrt{4 m \ln n}\right) \leq \frac{2}{n^{2}}$ for each i.

Fix i. W.I.o.g, assume $a_{i j}=1$ iff $1 \leq j \leq k$ for some $k \leq m$. Then $Z_{i}=b_{1}+\ldots+b_{k}$.

Note that b_{j} 's are independent over $\{-1,1\}$ with $\mathbb{E}\left[b_{j}\right]=0$.

By Hoeffding's Inequality, $\operatorname{Pr}\left(\left|Z_{i}\right| \geq \sqrt{4 m \ln n}\right) \leq 2 e^{-\frac{8 m \ln n}{4 k}} \leq \frac{2}{n^{2}}$

Concentration Inequalities: higher order and beyond sum

Bernstein Inequality (Bernstein, 1911)

Let $X=\sum_{i=1}^{n} X_{i}$, where X_{i} 's are independent r.v satisfying $\mathbb{E}\left[X_{i}\right]=0, \mathbb{E}\left[X_{i}^{2}\right] \leq b_{i}, \mathbb{E}\left[\left|X_{i}\right|^{k}\right] \leq \frac{b_{i}}{2} H^{k-2} k!$ for $k>2$. Then
$\operatorname{Pr}(|X| \geq t) \leq 2 e^{-\frac{t^{2}}{2\left(H t+\sum_{i=1}^{n} b_{i}\right)}}$ for any $t>0$

- Extended to dependent or multi-dimensional variables

McDiarmid Inequality (McDiarmid, 1989)

Let X_{1}, \cdots, X_{n} be independent r.v. and $f(\cdot)$ is an n-ary function with bounded differences c_{1}, \cdots, c_{n}. Let $Y=f\left(X_{1}, \cdots, X_{n}\right)$.
Then $\operatorname{Pr}(|Y-\mathbb{E}[Y]| \geq t) \leq 2 e^{-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}}$ for any $t>0$

- Extended to (quantitative and qualitative) dependence

Reflection on moments and Chernoff bounds

Chernoff Bounds

Why is it so good?
Can it be improved by non-exponential functions?
Anything to do with moments?

Moments

Do moments uniquely determine the distribution?

