Probabilistic Method and Random Graphs

Lecture 2. Moments and Inequalities ${ }^{1}$

Xingwu Liu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

${ }^{1}$ The slides are partially based on Chapters 3 and 4 of Probability and Computing.

Preface

Questions, comments, or suggestions?

Monty Hall Problem?

Review

(1) Probability axioms
(2) Union Bound
(3) Independence
(4) Conditional probability and chain rule

- $\operatorname{Pr}\left(\bigcap_{i=1}^{n} A_{i}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(A_{i} \mid \bigcap_{j=1}^{i-1} A_{j}\right)$
(5) Random variables: expectation, linearity

Bernoulli distribution

Bernoulli random variable

- $\operatorname{Pr}(X=1)=p, \operatorname{Pr}(X=0)=1-p$
- Modeling coin flip
- $\mathbb{E}[X]=p * 1+(1-p) * 0=p$
- $X^{k}=X$

Bernoulli distribution

Bernoulli random variable

- $\operatorname{Pr}(X=1)=p, \operatorname{Pr}(X=0)=1-p$
- Modeling coin flip
- $\mathbb{E}[X]=p * 1+(1-p) * 0=p$
- $X^{k}=X$

An example

How many triangles among 4 nodes when the links appear independently randomly?

Binomial distribution

Binomial random variable

- The number of successes in n independent trials of the Bernoulli experiment with success probability p
- For any $0 \leq i \leq n, \operatorname{Pr}(X=i)=C_{n}^{i} p^{i}(1-p)^{n-i}$
- $X=\sum_{i=1}^{n} X_{i}$
- $\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=n p$

Binomial distribution

Binomial random variable

- The number of successes in n independent trials of the Bernoulli experiment with success probability p
- For any $0 \leq i \leq n, \operatorname{Pr}(X=i)=C_{n}^{i} p^{i}(1-p)^{n-i}$
- $X=\sum_{i=1}^{n} X_{i}$
- $\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=n p$

Application

Router packets sampling

Geometric distribution

The story of Farmer\&Rabbit

Geometric distribution

The story of Farmer\&Rabbit

Geometric random variable

- The number of independent trials until success, where each trial has success probability p
- $\operatorname{Pr}(X=i)=(1-p)^{i-1} p$ for $i \geq 1$
- $\mathbb{E}[X]=\sum_{i \geq 1} i(1-p)^{i-1} p=1 / p$

Geometric distribution

The story of Farmer\&Rabbit

Geometric random variable

- The number of independent trials until success, where each trial has success probability p
- $\operatorname{Pr}(X=i)=(1-p)^{i-1} p$ for $i \geq 1$
- $\mathbb{E}[X]=\sum_{i \geq 1} i(1-p)^{i-1} p=1 / p$

Suppose the daily probability that God throws a rabbit at the trunk is 10^{-4}. How many years does the farmer has to wait?

Geometric distribution

The story of Farmer\&Rabbit

Geometric random variable

- The number of independent trials until success, where each trial has success probability p
- $\operatorname{Pr}(X=i)=(1-p)^{i-1} p$ for $i \geq 1$
- $\mathbb{E}[X]=\sum_{i \geq 1} i(1-p)^{i-1} p=1 / p$

Suppose the daily probability that God throws a rabbit at the trunk is 10^{-4}. How many years does the farmer has to wait?

Memoryless: particular to geometric distribution
For geometric random variable X, if $n>0$,
$\operatorname{Pr}(X=n+k \mid X>k)=\operatorname{Pr}(X=n)$

Application: coupon collector's problem

Problem statement
The \# of purchases for collecting n coupon types?

Application: coupon collector's problem

Problem statement

The \# of purchases for collecting n coupon types?

- X_{i} : the number of purchases after you get $i-1$ types of coupons until getting the i th one
- $X=\sum_{i=1}^{n} X_{i}$
- X_{i} : geometric random variable with parameter $p_{i}=1-\frac{i-1}{n}$
- $\mathbb{E}\left[X_{i}\right]=\frac{1}{p_{i}}=\frac{n}{n-i+1}$

Application: coupon collector's problem

Problem statement

The \# of purchases for collecting n coupon types?

- X_{i} : the number of purchases after you get $i-1$ types of coupons until getting the i th one
- $X=\sum_{i=1}^{n} X_{i}$
- X_{i} : geometric random variable with parameter $p_{i}=1-\frac{i-1}{n}$
- $\mathbb{E}\left[X_{i}\right]=\frac{1}{p_{i}}=\frac{n}{n-i+1}$
$\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=n \sum_{i=1}^{n} \frac{1}{i}=n \ln n+\Theta(n)$.

Fight the salesman

When $n=12, \mathbb{E}[X] \approx 30 \lll \lll<200$. Impossible! Cheater!

Coupon collector's problem: fight the salesman

Expectation is too weak

The probability of exceeding expectation can be arbitrarily big, Guy!

Example

- Random variables Y_{α} with $\alpha \geq 1$
- Let $\operatorname{Pr}\left(Y_{\alpha}=\alpha\right)=\frac{1}{\alpha}$ and $\operatorname{Pr}\left(Y_{\alpha}=0\right)=1-\frac{1}{\alpha}$
- $\mathbb{E}\left[Y_{\alpha}\right]=1$
- $\operatorname{Pr}\left(Y_{\alpha} \geq 1\right)=\frac{1}{\alpha}$ can be arbitrarily close to 1

But, mh...
Is it possible to exceed so much with high probability?

An inequality for tail probability

Markov's inequality

$$
\text { If } X \geq 0 \text { and } a>0, \operatorname{Pr}(X \geq a) \leq \frac{\mathbb{E}[X]}{a}
$$

Proof:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{i \geq 0} i * \operatorname{Pr}(X=i) \geq \sum_{i \geq a} i * \operatorname{Pr}(X=i) \\
& \geq \sum_{i \geq a} a * \operatorname{Pr}(X=i)=a * \operatorname{Pr}(X \geq a)
\end{aligned}
$$

Observations

- Intuitive meaning (level of your income)
- With 12 coupons, $\mathbb{E}[X] \approx 30, \operatorname{Pr}(X \geq 200)<1 / 6$
- Loose? Tight when only expectation is known!

Conditional expectation

Definition

$$
\mathbb{E}_{Y}[Y \mid Z] \triangleq \mathbb{E}[Y \mid Z=z] \triangleq \sum_{y} y * \operatorname{Pr}(Y=y \mid Z=z)
$$

Theorem

$\mathbb{E}_{Z}\left[\mathbb{E}_{Y}[Y \mid Z]\right] \triangleq \sum_{z} \mathbb{E}[Y \mid Z=z] \operatorname{Pr}(Z=z)=\mathbb{E}[Y]$

Proof.

$$
\begin{aligned}
\sum_{z} \operatorname{Pr}(Z=z) \mathbb{E}[Y \mid Z=z] & =\sum_{z} \operatorname{Pr}(Z=z) \sum_{y} y \frac{\operatorname{Pr}(Y=y, Z=z)}{\operatorname{Pr}(Z=z)} \\
& =\sum_{y} y \sum_{z} \operatorname{Pr}(Y=y, Z=z) \\
& =\sum_{y} y \operatorname{Pr}(Y=y)=\mathbb{E}[Y]
\end{aligned}
$$

Application: expected run-time of Quicksort

Via conditional expectation

- X_{n} : the runtime of sorting an n-sequence.
- K : the rank of the pivot.
- If $K=k$, the pivot divides the sequence into a
($k-1$)-sequence and an $(n-k)$-sequence.
- Given $K=k, X_{n}=X_{k-1}+X_{n-k}+n-1$.
- $\mathbb{E}\left[X_{n} \mid K=k\right]=\mathbb{E}\left[X_{k-1}\right]+\mathbb{E}\left[X_{n-k}\right]+n-1$.
- $\mathbb{E}\left[X_{n}\right]=\sum_{k=1}^{n} \operatorname{Pr}(K=k)\left(\mathbb{E}\left[X_{k-1}\right]+\mathbb{E}\left[X_{n-k}\right]+n-1\right)$

$$
=\sum_{k=1}^{n} \frac{\mathbb{E}\left[X_{k-1}\right]+\mathbb{E}\left[X_{n-k}\right]}{n}+n-1 .
$$

- Please verify that $\mathbb{E}\left[X_{n}\right]=2 n \ln n+O(n)$.

Application: expected run-time of Quicksort

Via linearity + indicators

- y_{i} : the i-th biggest element
- $Y_{i j}$: indicator for the event that y_{i}, y_{j} are compared
- $Y_{i j}=1$ iff the first pivot in $\left\{y_{i}, y_{i+1}, \ldots y_{j}\right\}$ is y_{i} or y_{j}
- $\mathbb{E}\left[Y_{i j}\right]=\operatorname{Pr}\left(Y_{i j}=1\right)=\frac{2}{j-i+1}$
- $X_{n}=\sum_{i=1}^{n} \sum_{j=i+1}^{n} Y_{i j}$
- $\mathbb{E}\left[X_{n}\right]=\sum_{i=1}^{n} \sum_{j=i+1}^{n} \mathbb{E}\left[Y_{i j}\right]$
- It is easy to see that $\mathbb{E}\left[X_{n}\right]=(2 n+2) \sum_{i=1}^{n} \frac{1}{i}+O(n)$

Moments of random variables

Why moments?

- Global features of a random variable.
- Expectation is too weak: can't distinguish Y_{α}

Definition

- k th moment: $\mathbb{E}\left[X^{k}\right]$.
- Variance: $\operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$, whose square root indicates how far the variable deviates from the expectation.
- Example: $\operatorname{Var}\left[Y_{\alpha}\right]=\alpha-1$
- Covariance: $\operatorname{Cov}(X, Y) \triangleq \mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]$.
- It's zero in case of independence.

Properties of the variance

$$
\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}(X, Y)
$$

$$
\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y] \text { if } X \text { and } Y \text { are independent. }
$$

$$
\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}
$$

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

Variances of some random variables

Binomial random variable with parameters n and p

- $X=\sum_{k=1}^{n} X_{i}$ with the X_{i} 's independent.
- $\operatorname{Var}\left[X_{i}\right]=p-p^{2}=p(1-p)$.
- $\operatorname{Var}[X]=\sum_{k=1}^{n} \operatorname{Var}\left[X_{i}\right]=n p(1-p)$

Geometric random variable with parameter p
Straightforward computing shows that $\operatorname{Var}[X]=\frac{1-p}{p^{2}}$

Coupon collector's problem

- We know that $\operatorname{Var}\left[X_{i}\right]=\frac{1-p_{i}}{p_{i}^{2}}$.
- $\operatorname{Var}[X]=\sum_{k=1}^{n} \operatorname{Var}\left[X_{i}\right] \leq \sum_{k=1}^{n} \frac{n^{2}}{(n-k+1)^{2}} \leq \frac{\pi^{2} n^{2}}{6}$

A new argument against the salesman

Chebyshev's inequality

- $\operatorname{Pr}(|X-\mathbb{E}[X]| \geq a) \leq \frac{\operatorname{Var}[X]}{a^{2}}$.
- An immediate corollary from Markov's inequality.

$$
\begin{aligned}
& \text { Coupon collector's problem } \\
& \operatorname{Pr}(X \geq 200)=\operatorname{Pr}(|X-\mathbb{E}[X]| \geq 170) \leq \frac{255}{170^{2}}<0.01
\end{aligned}
$$

A new argument against the salesman

Chebyshev's inequality

- $\operatorname{Pr}(|X-\mathbb{E}[X]| \geq a) \leq \frac{\operatorname{Var}[X]}{a^{2}}$.
- An immediate corollary from Markov's inequality.

Coupon collector's problem

$$
\operatorname{Pr}(X \geq 200)=\operatorname{Pr}(|X-\mathbb{E}[X]| \geq 170) \leq \frac{255}{170^{2}}<0.01
$$

Trump card

- By union bound, $\operatorname{Pr}\left(\left|X-n H_{n}\right| \geq 5 n H_{n}\right) \leq \frac{1}{n^{5}}$.
- Hint: Consider the probability of not containing the i th coupon after $(c+1) n \ln n$ steps.

Union bound beats the others. What a surprise!

Brief introduction to Chebyshev

- May 16, 1821 December 8, 1894
- A founding father of Russian mathematics
- Probability, statistics, mechanics, geometry, number theory
- Chebyshev inequality, Bertrand-Chebyshev theorem, Chebyshev polynomials, Chebyshev bias
- Aleksandr Lyapunov, Markov brothers

