Probabilistic Method and Random Graphs Lecture 2. Moments and Inequalities ¹

Xingwu Liu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

¹The slides are partially based on Chapters 3 and 4 of Probability and Computing.

Questions, comments, or suggestions?

Monty Hall Problem?

Review

- Probability axioms
- Onion Bound
- Independence
- Onditional probability and chain rule
 - $\Pr(\bigcap_{i=1}^{n} A_i) = \prod_{i=1}^{n} \Pr(A_i | \bigcap_{j=1}^{i-1} A_j)$
- Sandom variables: expectation, linearity

Bernoulli random variable

- $\Pr(X = 1) = p, \Pr(X = 0) = 1 p$
- Modeling coin flip

•
$$\mathbb{E}[X] = p * 1 + (1 - p) * 0 = p$$

•
$$X^k = X$$

Bernoulli random variable

- $\Pr(X = 1) = p, \Pr(X = 0) = 1 p$
- Modeling coin flip

•
$$\mathbb{E}[X] = p * 1 + (1 - p) * 0 = p$$

•
$$X^k = X$$

An example

How many triangles among 4 nodes when the links appear independently randomly?

Binomial random variable

- The number of successes in n independent trials of the Bernoulli experiment with success probability p
- For any $0 \le i \le n$, $\Pr(X = i) = C_n^i p^i (1 p)^{n-i}$

•
$$X = \sum_{i=1}^{n} X_i$$

•
$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = np$$

Binomial random variable

- The number of successes in n independent trials of the Bernoulli experiment with success probability p
- For any $0 \le i \le n$, $\Pr(X = i) = C_n^i p^i (1 p)^{n-i}$

•
$$X = \sum_{i=1}^{n} X_i$$

•
$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = np$$

Application

Router packets sampling

The story of Farmer&Rabbit

The story of Farmer&Rabbit

Geometric random variable

 $\bullet\,$ The number of independent trials until success, where each trial has success probability p

•
$$\Pr(X = i) = (1 - p)^{i-1}p$$
 for $i \ge 1$

•
$$\mathbb{E}[X] = \sum_{i \ge 1} i(1-p)^{i-1}p = 1/p$$

The story of Farmer&Rabbit

Geometric random variable

 $\bullet\,$ The number of independent trials until success, where each trial has success probability p

•
$$\Pr(X = i) = (1 - p)^{i-1}p$$
 for $i \ge 1$

•
$$\mathbb{E}[X] = \sum_{i \ge 1} i(1-p)^{i-1}p = 1/p$$

Suppose the daily probability that God throws a rabbit at the trunk is 10^{-4} . How many years does the farmer has to wait?

The story of Farmer&Rabbit

Geometric random variable

 $\bullet\,$ The number of independent trials until success, where each trial has success probability p

•
$$\Pr(X = i) = (1 - p)^{i-1}p$$
 for $i \ge 1$

•
$$\mathbb{E}[X] = \sum_{i>1} i(1-p)^{i-1}p = 1/p$$

Suppose the daily probability that God throws a rabbit at the trunk is 10^{-4} . How many years does the farmer has to wait?

Memoryless: particular to geometric distribution

For geometric random variable X, if n > 0, Pr(X = n + k | X > k) = Pr(X = n)

Application: coupon collector's problem

Problem statement

The # of purchases for collecting n coupon types?

Application: coupon collector's problem

Problem statement

The # of purchases for collecting n coupon types?

X_i: the number of purchases after you get *i* − 1 types of coupons until getting the *i*th one

•
$$X = \sum_{i=1}^{n} X_i$$

• X_i : geometric random variable with parameter $p_i = 1 - \frac{i-1}{n}$

•
$$\mathbb{E}[X_i] = \frac{1}{p_i} = \frac{n}{n-i+1}$$

Application: coupon collector's problem

Problem statement

The # of purchases for collecting n coupon types?

X_i: the number of purchases after you get *i* − 1 types of coupons until getting the *i*th one

•
$$X = \sum_{i=1}^{n} X_i$$

• X_i : geometric random variable with parameter $p_i = 1 - \frac{i-1}{n}$

•
$$\mathbb{E}[X_i] = \frac{1}{p_i} = \frac{n}{n-i+1}$$

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = n \sum_{i=1}^{n} \frac{1}{i} = n \ln n + \Theta(n).$$

Fight the salesman

When n = 12, $\mathbb{E}[X] \approx 30 \ll \ll \ll 200$. Impossible! Cheater!

Coupon collector's problem: fight the salesman

Expectation is too weak

The probability of exceeding expectation can be arbitrarily big, Guy!

Example

- Random variables Y_{α} with $\alpha \geq 1$
- Let $\Pr(Y_{\alpha} = \alpha) = \frac{1}{\alpha}$ and $\Pr(Y_{\alpha} = 0) = 1 \frac{1}{\alpha}$
- $\mathbb{E}[Y_{\alpha}] = 1$
- $\Pr(Y_{\alpha} \ge 1) = \frac{1}{\alpha}$ can be arbitrarily close to 1

But, mh... Is it possible to exceed so much with high probability?

Markov's inequality

If
$$X \ge 0$$
 and $a > 0$, $\Pr(X \ge a) \le \frac{\mathbb{E}[X]}{a}$.

Proof:

$$\mathbb{E}[X] = \sum_{i \ge 0} i * \Pr(X = i) \ge \sum_{i \ge a} i * \Pr(X = i)$$
$$\ge \sum_{i \ge a} a * \Pr(X = i) = a * \Pr(X \ge a).$$

Observations

- Intuitive meaning (level of your income)
- With 12 coupons, $\mathbb{E}[X]\approx 30, \Pr(X\geq 200)<1/6$
- Loose? Tight when only expectation is known!

Conditional expectation

Definition

$$\mathbb{E}_{Y}[Y|Z] \triangleq \mathbb{E}[Y|Z = z] \triangleq \sum_{y} y * \Pr(Y = y|Z = z)$$

Theorem

$$\mathbb{E}_{Z}[\mathbb{E}_{Y}[Y|Z]] \triangleq \sum_{z} \mathbb{E}[Y|Z=z] \Pr(Z=z) = \mathbb{E}[Y]$$

Proof.

$$\begin{split} \sum_{z} \Pr(Z = z) \mathbb{E}[Y|Z = z] &= \sum_{z} \Pr(Z = z) \sum_{y} y \frac{\Pr(Y = y, Z = z)}{\Pr(Z = z)} \\ &= \sum_{y} y \sum_{z} \Pr(Y = y, Z = z) \\ &= \sum_{y} y \Pr(Y = y) = \mathbb{E}[Y] \end{split}$$

<ロト < 回 > < 直 > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Via conditional expectation

- *X_n*: the runtime of sorting an *n*-sequence.
- K: the rank of the pivot.
- If K = k, the pivot divides the sequence into a (k 1)-sequence and an (n k)-sequence.
- Given K = k, $X_n = X_{k-1} + X_{n-k} + n 1$.
- $\mathbb{E}[X_n|K=k] = \mathbb{E}[X_{k-1}] + \mathbb{E}[X_{n-k}] + n 1.$
- $\mathbb{E}[X_n] = \sum_{k=1}^n \Pr(K=k) (\mathbb{E}[X_{k-1}] + \mathbb{E}[X_{n-k}] + n 1)$ = $\sum_{k=1}^n \frac{\mathbb{E}[X_{k-1}] + \mathbb{E}[X_{n-k}]}{n} + n - 1.$

• Please verify that $\mathbb{E}[X_n] = 2n \ln n + O(n)$.

Via linearity + indicators

- y_i: the *i*-th biggest element
- Y_{ij} : indicator for the event that y_i, y_j are compared
- $Y_{ij} = 1$ iff the first pivot in $\{y_i, y_{i+1}, ... y_j\}$ is y_i or y_j
- $\mathbb{E}[Y_{ij}] = \Pr(Y_{ij} = 1) = \frac{2}{j-i+1}$

•
$$X_n = \sum_{i=1}^n \sum_{j=i+1}^n Y_{ij}$$

•
$$\mathbb{E}[X_n] = \sum_{i=1}^n \sum_{j=i+1}^n \mathbb{E}[Y_{ij}]$$

• It is easy to see that $\mathbb{E}[X_n] = (2n+2)\sum_{i=1}^n \frac{1}{i} + O(n)$

Why moments?

- Global features of a random variable.
- Expectation is too weak: can't distinguish Y_{lpha}

Definition

- kth moment: $\mathbb{E}[X^k]$.
- Variance: $Var[X] = \mathbb{E}[(X \mathbb{E}[X])^2]$, whose square root indicates how far the variable deviates from the expectation.

• Example:
$$Var[Y_{\alpha}] = \alpha - 1$$

- Covariance: $Cov(X, Y) \triangleq \mathbb{E}[(X \mathbb{E}[X])(Y \mathbb{E}[Y])].$
- It's zero in case of independence.

$$Var[X + Y] = Var[X] + Var[Y] + 2Cov(X, Y)$$

Var[X + Y] = Var[X] + Var[Y] if X and Y are independent.

$$Var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

 $Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$

Binomial random variable with parameters n and p

•
$$X = \sum_{k=1}^{n} X_i$$
 with the X_i 's independent.

•
$$Var[X_i] = p - p^2 = p(1 - p).$$

•
$$Var[X] = \sum_{k=1}^{n} Var[X_i] = np(1-p)$$

Geometric random variable with parameter p

Straightforward computing shows that $Var[X] = \frac{1-p}{p^2}$

Coupon collector's problem

•
$$Var[X] = \sum_{k=1}^{n} Var[X_i] \le \sum_{k=1}^{n} \frac{n^2}{(n-k+1)^2} \le \frac{\pi^2 n^2}{6}$$

Chebyshev's inequality

•
$$\Pr(|X - \mathbb{E}[X]| \ge a) \le \frac{Var[X]}{a^2}$$

• An immediate corollary from Markov's inequality.

Coupon collector's problem

$$\Pr(X \ge 200) = \Pr(|X - \mathbb{E}[X]| \ge 170) \le \frac{255}{170^2} < 0.01$$

Chebyshev's inequality

•
$$\Pr(|X - \mathbb{E}[X]| \ge a) \le \frac{Var[X]}{a^2}$$

An immediate corollary from Markov's inequality.

Coupon collector's problem

$$\Pr(X \ge 200) = \Pr(|X - \mathbb{E}[X]| \ge 170) \le \frac{255}{170^2} < 0.01$$

Trump card

- By union bound, $\Pr(|X nH_n| \ge 5nH_n) \le \frac{1}{n^5}$.
- Hint: Consider the probability of not containing the *i*th coupon after $(c+1)n \ln n$ steps.

Union bound beats the others. What a surprise!

A D > A D > A D > A D >

Brief introduction to Chebyshev

- May 16, 1821 December 8, 1894
- A founding father of Russian mathematics

- Probability, statistics, mechanics, geometry, number theory
- Chebyshev inequality, Bertrand-Chebyshev theorem, Chebyshev polynomials, Chebyshev bias
- Aleksandr Lyapunov, Markov brothers