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1The slides are mainly based on Chapter 6 of Probability and Computing.



Comments, questions, or suggestions?



Recap of Lecture 11

e De-randomization

e Expectation argument leads to efficient randomized algo.

* Sample and verify (succeed if lucky)

* De-randomizing such algo. leads to deterministic algo

* Sequentially make deterministic choices, maintaining conditional expectation

 Precondition

* Only valid for expectation argument where randomness
lies in a sequence of random variables

* Built on randomized algo.
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Sample

Probability
space The process is doomed!
Can we do anything?

) De-randomization works, but
[ Sampling ] conditionally.
Sample&modify speeds it up.
Nonzero
probability

of success
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Sample and Modity
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Big Chromatic Number and Big Girth

e Chromatic number vs local structure

e Sparse local structure = small chro. number?
* No! (Erd6s 1959)

* One of the first applications of prob. Method

* Theorem: for any integers g, k > 0, there is a graph
with girth= g and chro. number= k

* We just prove the special case g = 4, i.e. triangle-
free



Technical challenge

* [t is hard to compute/estimate/check chro. number
* v(G): the chromatic number of G

e Often handled indirectly via easy-to-handle features

* Example:
* [(G): the size of a maximum independent set of G
* I(G)x(G) =n
* Small I(G) implies big y(G)



Basic |dea of the Proof

 Randomly pick a graph G from Gn,p

* With high probability 1(G) is small
* ¥(G) is big w.h.p.

e With high probability G has few triangles
* Destroy the triangles while keeping 1(G) small



Proof: I(G) is small w.h.p.

. n
e §: avertex set of size ﬁ

* As: S is an independent set

+ Pr(1(6) = ) = Pr(Us 45)
n/Zk)

< (i) (1 - ™

_pn(n-2k)
< 2"e  8k?

which is small if nis large and p = w(n™1)




Proof: triangles are few w.h.p.

* 7(G): the number of triangles of G

n 2

3 —_—
E[7(0)] = (3)p® < (n;;) =—ifp=mn:

* By Markov ineq., Pr (T(G) > g) < %

_pn(n-2k)

* Recall Pr (]I(G) > ) < 2"e  8k?

_pn?® 2 5
< e™ e 16kZ = NN3/16K° it S AL

<e M <% if n1/3 > 32k?
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Proof: destroy triangles

1

n n
. PI‘(H(G) < ;,T(G’) < E) > >
e Choose G s.t. I(G) < %,T(G) < g
 Remove one vertex from each triangle of G,
resulting in a graph G'withn' > n — 7 (G)
« (G < I(G) < %

. , n' n—-7(G)
)((G)ZH(G,)Z — =k

2k




Algorithm for finding such a graph

* Fixn'/3 > 32k? andp = n~2/3
* Sample G from Gy, ,,
e Destroy the triangles

* Success probability > %

* Do you have any idea of de-randomizing?



Main Probabilistic Methods

* Counting argument
* First-moment method
e Second-moment method

e |l ovasz local lemma
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Second moment argument

* Chebyshev Ineq.: Pr(|X — E[X]| = a) < Va;‘Z[X]
* A special case:
Pr(X = 0) < Pr(|X — E[x]| = E[X]) < =

* Compare with Pr(X # 0) < E[X] for integer r.v. X

* Typically works when nearly independent
* Due to the difficulty in computing the variance




An improved version by Shepp

Var[x] < Var[x]
E[x?] — (E[X])?

* Proof: (E[X])? = (E[1y40 - X])*
< E[1x0|E[X?]
= Pr(X # 0)E[X?]
= E[X?] — Pr(X = 0)E[X?]
* The inequality is due to (ffg)z < [f%][g*

2
* When X > 0,Pr(X >0) > {D]

« Pr(X =0) <




Generalizing Shepp’s Theorem

« Pr(X > OE[X]) = (1 — )2 & D] 6 € (0,1)
e Paley&Zygmund, 1932
. Proof

E[X IE[X1X<6E 1+ E[X1xs0gx]

< OE[X] + (E[X?]Pr(X > OE[X ))
e Further improvement, tight when X is constant

(1-0)2(E[X])?
Pr(X > OE[X]) 2 oy rmm

due to IE[X — HIE[X]] < IE[(X — QIE[X])1X>91E[X]]
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App.: Erdds distinct sum problem

« S c R* has distinct subset sums

* Different subsets have different sums
e Example: S = {29, 21, ...2%}

* Fixn € Z*. Let f(n) be the max size of S < [n] which
has distinct subset sums.

* Easy lower bound: f(n) = [In,n| + 1

* ErdGs promised 500S: f(n) < |In,n] + ¢
* Now offered by Ron Graham?



An easy bound: k < In,n+ln,ln,n + 1

* Assume k-set S € |n] has distinct subset sums
* There are 2% subset sums

* Each subset sum € [nk]

 So, 2% < nk

* k < In,n+ln, k < In,n+ln, (In,n+ln, k)

< In,n+In, (2ln,n)

= In,n+In,In,n + 1
* Can it be tighter? Yes!



A tighter upper bound

* Intuition underlying the proof:
e A small interval ([nk]) has many (2%) distinct sums

e If the sums are not distributed uniformly
* Most of the sums lie in a much smaller interval
e k must be smaller
* It is the case by Chebyshev’s Inequality



Proof: f(n) = lnzn%lnzlnzn + 0(1)

* Fix a k-set S c [n] with distinct subset sums
e X:the sum of a random subset of S
e u = E[X], 0% = Var[X]

1
*Pr(lX —pul 2 a0) < 5 =

1—1SP1‘(|X—,u < ao) >

a2

1 : .
1—— < Zli—u|<a0' DI‘(X = l)

a2




Proof: f(n) = lnzn%lnzlnzn + 0(1)

* Fix a k-set S c |n] with distinct subset sums

e X:the sum of a random subset of S
* u = E[X],0?% = Var[X]

1
°Pr(|X—,u|2a0)Sa—2=>

1—1SPr(|X—u| < ao) =

a2
20

1 — < Zli—[il<6l0' PI‘(X —_ l) S Z_k

Since Pr(X = i) is either 0 or 2%
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Proof (continued)

* Estimating o (assume S = {a4, ..., ax }):

2 2 2
0_2_a1+ +“k3"_":>gsﬂ
4 4
1 20 anvk
l-msorsx
2k(1-—)
> a
=
* This holds for any @ > 1. Let « = /3
2 2k 1
en > < +=
nzo =7 k <In,n 2lnzlnzn + 0(1)



Application: threshold function

* Consider a property P of random graph G, ,,
* Threshold function t(n) for P is such that

tim Pr(G has ) = {7 7~ 200

° Example (clique number ¢(G): max clique size)
e P:c(G) =4
2

* t(n) = n 3is the threshold function for P



2
Proof: whenp = o(n 3)

e §:a 4-subset of the n vertices
* Xs: indicator of whether S spans a clique

* X = )¢ Xs: the number of 4-cliques

+ E[X] = (3 ) p® = 0(n*p®) = o(1)

* By Markov’s inequality
Pr(c(G) =2 4) =Pr(X >0) < E|[X] =0(1)



2
Proof: whenp = w(n 3)

 Toderive Pr( X >0) » 1
* By Chebychev’s Ineq.: Pr(X = 0) <
e Try to show Var[X] = o(E[X])?
* Recall Var|X] = )¢ Var[Xs] + X7 Cov(Xs, X7)
* X5 is anindicator = Var[X¢]| < E[X]
. Cov(Xs, X7) < E[XoX7]
=Pr(Xs = 1,X; = 1)
= E[X,]Pr(X; = 1|Xs = 1)
And Cov (X, X7)=0 if independent

Var|[X]
(E[X])?



Proof: estimating the variance

* Var[X]| < YsE[Xs| + X5 E[Xs| Xrs Pr(Xy = 1]Xs = 1)
= 2s E[Xs]Ag
e As = 1+ Yypnsiza Pr(Xy = 1]Xs = 1)
+ 2rns|=3 PriXr = 1|Xg = 1)
=1+ (")p® + ("GP
= o(n*p®) = o(E[X])
 Var[X] = o(E[X]?) = Pr(X = 0) <
= Pr(X >0) - 1

=0(1)



References

* http://www.openproblemgarden.org/

2021/12/13

27


http://www.openproblemgarden.org/

Thank you



