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Comments, questions, or suggestions?
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Recap of Lecture 11

• De-randomization
• Expectation argument leads to efficient randomized algo.

• Sample and verify (succeed if lucky)

• De-randomizing such algo. leads to deterministic algo

• Sequentially make deterministic choices, maintaining conditional expectation

• Precondition
• Only valid for expectation argument where randomness 

lies in a sequence of random variables

• Built on randomized algo.
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The process is doomed!
Can we do anything?
De-randomization works, but 
conditionally.
Sample&modify speeds it up.
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Big Chromatic Number and Big Girth

• Chromatic number vs local structure
• Sparse local structure → small chro. number?
• No! (Erdős 1959)

• One of the first applications of prob. Method
• Theorem: for any integers 𝑔, 𝑘 > 0, there is a graph 

with girth≥ 𝑔 and chro. number≥ 𝑘
• We just prove the special case 𝑔 = 4, i.e. triangle-

free



Technical challenge

• It is hard to compute/estimate/check chro. number
• 𝜒 𝐺 : the chromatic number of 𝐺

• Often handled indirectly via easy-to-handle features
• Example:
• 𝕀(𝐺): the size of a maximum independent set of 𝐺
• 𝕀(𝐺)𝜒 𝐺 ≥ 𝑛
• Small 𝕀(𝐺) implies big 𝜒 𝐺



Basic Idea of the Proof

• Randomly pick a graph 𝐺 from 𝐺!,#
• With high probability 𝕀(𝐺) is small
• 𝜒 𝐺 is big w.h.p.

• With high probability 𝐺 has few triangles
• Destroy the triangles while keeping 𝕀(𝐺) small
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Proof: 𝕀(𝐺) is small w.h.p.

• 𝑆:	a	vertex	set	of	size	 !
$%

• 𝐴&:	𝑆 is an independent set

• Pr 𝕀(𝐺) ≥ !
$%

= Pr ⋃&𝐴&

≤ !
!/$% 1 − 𝑝

!/#$
#

< 2!𝑒(
%!(!'#$)

)$#

which is small if 𝑛 is large and 𝑝 = 𝜔(𝑛())
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Proof: triangles are few w.h.p.

• 𝒯(𝐺): the number of triangles of 𝐺

• 𝔼 𝒯(𝐺) = !
* 𝑝

* < !# *

+
= !

+
if 𝑝 = 𝑛(

#
*

• By Markov ineq., Pr 𝒯(𝐺) > !
$
≤ )

*

• Recall Pr 𝕀 𝐺 ≥ !
$%

< 2!𝑒(
%!(!'#$)

)$#

< 𝑒! 𝑒(
%!#

+,$# = 𝑒!(!
-
*/)+%# if 𝑛 > 4𝑘

< 𝑒(! < )
+

if 𝑛)/* ≥ 32𝑘$
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Proof: destroy triangles

• Pr 𝕀 𝐺 < !
$%
, 𝒯(𝐺) ≤ !

$
> )

$
• Choose 𝐺 s.t. 𝕀 𝐺 < !

"#
, 𝒯(𝐺) ≤ !

"

• Remove one vertex from each triangle of 𝐺, 
resulting in a graph 𝐺,with 𝑛, ≥ 𝑛 − 𝒯(𝐺)
• 𝕀 𝐺′ ≤ 𝕀 𝐺 < !

$%

• 𝜒 𝐺, ≥ !.

𝕀 ..
≥ !(𝒯(.)

!
#$

≥ 𝑘
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Algorithm for finding such a graph

• Fix 𝑛)/* ≥ 32𝑘$ and 𝑝 = 𝑛($/*

• Sample 𝐺 from 𝐺!,#
• Destroy the triangles

• Success probability > ½

• Do you have any idea of de-randomizing?
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Main Probabilistic Methods

• Counting argument

• First-moment method

• Second-moment method

• Lovasz local lemma
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Second moment argument

• Chebyshev Ineq.: Pr 𝑋 − 𝔼 𝑋 ≥ 𝑎 ≤ 234[6]
8#

• A special case: 

Pr 𝑋 = 0 ≤ Pr 𝑋 − 𝔼 𝑋 ≥ 𝔼 𝑋 ≤ 234[6]
(𝔼 6 )#

• Compare with Pr 𝑋 ≠ 0 ≤ 𝔼[𝑋] for integer r.v. 𝑋
• Typically works when nearly independent
• Due to the difficulty in computing the variance
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An improved version by Shepp

• Pr 𝑋 = 0 ≤ Var 6
𝔼 6#

≤ 234[6]
(𝔼 6 )#

• Proof: (𝔼 𝑋 )$ = 𝔼 16:; R 𝑋 $

≤ 𝔼 16:;$ 𝔼 𝑋$

= Pr(𝑋 ≠ 0)𝔼 𝑋$

= 𝔼 𝑋$ − Pr(𝑋 = 0)𝔼 𝑋$
• The inequality is due to ∫𝑓𝑔

"
≤ ∫𝑓" ∫𝑔"

• When 𝑋 ≥ 0, Pr 𝑋 > 0 > (𝔼 6 )#

𝔼 6#
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Generalizing Shepp’s Theorem

• Pr 𝑋 > 𝜃𝔼 𝑋 ≥ 1 − 𝜃 ! (𝔼 $ )!

𝔼 $!
, 𝜃 ∈ (0,1)

• Paley&Zygmund, 1932
• Proof:

𝔼 𝑋 = 𝔼 𝑋1$&'𝔼 $ + 𝔼 𝑋1$('𝔼 $

≤ 𝜃𝔼 𝑋 + 𝔼 𝑋! Pr 𝑋 > 𝜃𝔼 𝑋
"
!

• Further improvement, tight when 𝑋 is constant
Pr 𝑋 > 𝜃𝔼 𝑋 ≥ )*' !(𝔼 $ )!

+,- $ . )*' ! 𝔼 $ !

due to 𝔼 𝑋 − 𝜃𝔼 𝑋 ≤ 𝔼 (𝑋 − 𝜃𝔼 𝑋 )1$('𝔼 $
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App.: Erdős distinct sum problem
• 𝑆 ⊂ ℝ< has distinct subset sums
• Different subsets have different sums
• Example: 𝑆 = 2$, 2%, … 2#

• Fix 𝑛 ∈ ℤ<. Let 𝑓 𝑛 be the max size of 𝑆 ⊂ 𝑛 which 
has distinct subset sums.  
• Easy lower bound: 𝑓 𝑛 ≥ ln$𝑛 + 1
• Erdős promised 500$: 𝑓 𝑛 ≤ ln$𝑛 + 𝑐
• Now offered by Ron Graham?
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An easy bound: 𝑘 ≤ ln5𝑛+ln5ln5𝑛 + 1

• Assume 𝑘-set  𝑆 ⊆ 𝑛 has distinct subset sums
• There are 2% subset sums
• Each subset sum ∈ 𝑛𝑘
• So, 2% ≤ 𝑛𝑘
• 𝑘 ≤ ln$𝑛+ln$𝑘 ≤ ln$𝑛+ln$(ln$𝑛+ln$𝑘)

≤ ln$𝑛+ln$(2ln$𝑛)
= ln$𝑛+ln$ln$𝑛 + 1

• Can it be tighter? Yes!
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A tighter upper bound

• Intuition underlying the proof:
• A small interval ( 𝑛𝑘 ) has many (2#) distinct sums

• If the sums are not distributed uniformly 
• Most of the sums lie in a much smaller interval
• 𝑘 must be smaller
• It is the case by Chebyshev’s Inequality
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Proof: 𝑓(𝑛) = ln!𝑛+"
!
ln!ln!𝑛 + 𝑂(1)

• Fix a 𝑘-set 𝑆 ⊂ 𝑛 with distinct subset sums
• 𝑋: the sum of a random subset of 𝑆

• 𝜇 = 𝔼 𝑋 , 𝜎" = 𝑉𝑎𝑟[𝑋]

• Pr 𝑋 − 𝜇 ≥ 𝛼𝜎 ≤ )
=#
⇒

1 − )
=#
≤ Pr 𝑋 − 𝜇 < 𝛼𝜎 ⇒

1 − )
=#
≤ ∑ >(? @=A Pr 𝑋 = 𝑖
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Proof: 𝑓(𝑛) = ln!𝑛+"
!
ln!ln!𝑛 + 𝑂(1)

• Fix a 𝑘-set 𝑆 ⊂ 𝑛 with distinct subset sums
• 𝑋: the sum of a random subset of 𝑆

• 𝜇 = 𝔼 𝑋 , 𝜎" = Var[𝑋]

• Pr 𝑋 − 𝜇 ≥ 𝛼𝜎 ≤ )
=#
⇒

1 − )
=#
≤ Pr 𝑋 − 𝜇 < 𝛼𝜎 ⇒

1 − )
=#
≤ ∑ >(? @=A Pr 𝑋 = 𝑖 ≤ $=A

$$
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Since Pr(𝑋 = 𝑖) is either 0 or 2!"



Proof (continued)

• Estimating 𝜎 (assume 𝑆 = {𝑎), … , 𝑎% }):

𝜎$ = 8+#<⋯<8$
#

C
≤ !#%

C
⇒ 𝜎 ≤ ! %

$

⇒ 1 − )
=#
≤ $=A

$$
≤ =! %

$$

⇒ 𝑛 ≥
$$ )( +

/#

= %
• This holds for any 𝛼 > 1. Let 𝛼 = 3

• 𝑛 ≥ $
* *

$$

%
⇒ 𝑘 ≤ ln$𝑛+ )

$
ln$ln$𝑛 + 𝑂(1)
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Application: threshold function

• Consider a property 𝑃 of random graph 𝐺!,#
• Threshold function 𝑡(𝑛) for 𝑃 is such that

lim
!→E

Pr 𝐺!,# has 𝑃 = l
0 if 𝑝 = 𝑜(𝑡(𝑛))
1 if 𝑝 = 𝜔(𝑡(𝑛))

• Example (clique number 𝑐 𝐺 : max clique size)
• 𝑃: 𝑐 𝐺 ≥ 4

• 𝑡 𝑛 = 𝑛.
!
" is the threshold function for 𝑃
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Proof: when 𝑝 = 𝑜(𝑛!
6
7)

• 𝑆: a 4-subset of the 𝑛 vertices
• 𝑋&: indicator of whether 𝑆 spans a clique
• 𝑋 = ∑&𝑋&: the number of 4-cliques

• 𝔼 𝑋 = 𝑛
4 𝑝+ = Θ(𝑛C𝑝+) = 𝑜(1)

• By Markov’s inequality
Pr(𝑐 𝐺 ≥ 4) = Pr(𝑋 > 0) ≤ 𝔼 𝑋 = 𝑜(1)

2021/12/13 24



Proof: when 𝑝 = 𝜔(𝑛#
H
I)

• To derive Pr 𝑋 > 0 → 1
• By Chebychev’s Ineq.: Pr 𝑋 = 0 ≤ #$%[']

(𝔼 ' )#

• Try to show Var[𝑋] = 𝑜(𝔼 𝑋 ),

• Recall Var 𝑋 = ∑/Var[𝑋/] + ∑/01 Cov(𝑋/, 𝑋1)
• 𝑋/ is an indicator ⇒ Var[𝑋/] ≤ 𝔼[𝑋/]
• Cov 𝑋/, 𝑋1 ≤ 𝔼 𝑋/𝑋1

= Pr 𝑋/ = 1, 𝑋1 = 1
= 𝔼 𝑋/ Pr 𝑋1 = 1|𝑋/ = 1

And Cov 𝑋/, 𝑋1 =0 if independent
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Proof: estimating the variance

• Var 𝑋 ≤ ∑/𝔼 𝑋/ + ∑/𝔼 𝑋/ ∑0∼/Pr 𝑋0 = 1|𝑋/ = 1
= ∑/𝔼 𝑋/ Δ/

• Δ/ = 1 + ∑|0∩/|4"Pr 𝑋0 = 1|𝑋/ = 1
+∑|0∩/|45Pr 𝑋0 = 1|𝑋/ = 1

= 1 + !.6
"

6
" 𝑝

7 + !.6
%

6
5 𝑝

5

= 𝑜 𝑛6𝑝8 = 𝑜(𝔼[𝑋])

• Var 𝑋 = 𝑜(𝔼 𝑋 ")⇒ Pr 𝑋 = 0 ≤ 9:;[=]
𝔼 = ! = 𝑜(1)

⇒ Pr 𝑋 > 0 → 1
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References 

• http://www.openproblemgarden.org/
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Thank you


