Probabilistic Method and Random Graphs Lecture 11. De-randomization and Sample&Modify

Xingwu Liu

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

¹The slides are mainly based on Chapter 6 of Probability and Computing.

Comments, questions, or suggestions?

A Review of Lecture 10

• Principle of probabilistic method

- Counting: Tournament, Ramsey number
- First moment method: Max-3SAT, MIS
 - Expectation argument: $Pr(X \ge \mathbb{E}[X]) > 0$, $Pr(X \le \mathbb{E}[X]) > 0$
 - Markov's inequality: $Pr(X \ge a) \le \frac{\mathbb{E}[X]}{a}$

 $\Pr(X \neq 0) = \Pr(X > 0) = \Pr(X \ge 1) \le \mathbb{E}[X]$

A Review of Lecture 10

- How to find a desirable object? By sampling!
- Algorithmic paradigm

A Review of Lecture 10

- How to find a desirable object? By sampling!
- Algorithmic paradigm

• First moment method guarantees efficiency

Expectation argument

• Turán Theorem

- Any graph G = (V, E) contains an independent set of size at least $\frac{|V|}{D+1}$, where $D = \frac{2|E|}{|V|}$

- Proof: Consider the following random process for constructing an independent set *S*:
 - Initialize S to be the empty set
 - Repeat: Remove S and its neighbors; randomly choose a remaining vertex u
 - Return S

Proof (Continued)

- *S* is an independent set
- Vertex u is selected with probability $\geq \frac{1}{d(u)+1}$ - See the next slide

• So,
$$\mathbb{E}[|S|] \ge \sum \frac{1}{d(u)+1} \ge \frac{|V|}{D+1}$$
 due to convexity

• **Remark:** probability of sampling a good independent set is $\geq \frac{1}{2D|V|^2}$

Proof: $\Pr(u \text{ is selected}) \ge \frac{1}{d(u)+1}$

- *u* is selected if and only if *A* occurs
 - -A: when sampling first occurs in the neighborhood of u, u rather than its neighbors is sampled
 - Neighborhood: u and its then-valid neighbors
 - Denote the neighborhood by N, and the number of then-valid neighbors by x. Note that $x \leq d(u)$
- Pr(A) = Pr(u is chosen | sampling occurs in N)

$$=\frac{1}{x+1} \ge \frac{1}{d(u)+1}$$

• Cool to get an efficient randomized algorithm

• Can we derive a deterministic one?

• Yes, if expectation argument is used

De-randomization: an example

 MAX-3SAT: Given a 3-CNF Boolean formula, find a truth assignment satisfying the maximum number of clauses

 $- \operatorname{E.g.:} (x_1 \lor x_2 \lor x_3) \land \dots \land (\overline{x_1} \lor \overline{x_3} \lor x_4)$

- Known: at least $\frac{7}{8}n$ clauses can be satisfied
- Randomized algo. to find a good assignment
 - Independently, randomly assign values to variables
 - Succeed if lucky
 - Can we make good choice, rather than pray for luck?

Look closer at the randomized algorithm

- In equivalence, choose values sequentially
- Good choices lead to a good final result
 - Which choice is good?
 - Easy to know with hindsight, but how to predict
 - A tentative approach: always make the choice which allows a good final result
 - Fact: a $\frac{7n}{8}$ expect. means the existence of a $\frac{7}{8}$ -approx.
 - Make the current choice, keeping the expectation $\geq \frac{7n}{2}$
 - Nice, but does such a choice exist? How to find it?

Conditional expectation says yes!

• The first step

$$-\frac{7n}{8} = \mathbb{E}[X] = \sum_{v_1} \Pr(x_1 = v_1) \mathbb{E}[X|x_1 = v_1]$$

- There must be v_1 s.t. $\mathbb{E}[X|x_1 = v_1] \ge \frac{7n}{8}$

- Likewise, if $\mathbb{E}[X|x_1 = v_1, \dots, x_{k-1} = v_{k-1}] \ge \frac{7n}{8}$, then $\mathbb{E}[X|x_1 = v_1, \dots, x_k = v_k] \ge \frac{7n}{8}$ for some v_k
- Final correctness

$$-X(x_1 = v_1, \dots, x_m = v_m) = \mathbb{E}[X|x_1 = v_1, \dots, x_m = v_m] \ge \frac{7n}{8}$$

• Given
$$v_1, \ldots, v_{k-1}$$
, what's the v_k ?

• Let v_k s.t. $\mathbb{E}[X|x_1 = v_1, \dots, x_k = v_k]$ is maximized

Deterministic $\frac{7}{8}$ -algorithm for MAX-3SAT

For $k = 1 \cdots m$ do Assign to x_k the value v_k that maximizes $\mathbb{E}[X|x_1 = v_1, \dots x_{k-1} = v_{k-1}, x_k = v_k]$ Endfor

• Cool! And this approach can be generalized

De-randomization via conditional expectation

- Expectation argument⇒deterministic algorithm
- Basic idea
 - Expectation argument guarantees existence
 - Sequentially make deterministic choices
 - Each choice maintains the expectation, given the past ones
- Only valid for expectation argument where randomness lies in a sequence of random variables
- What if the expectation is hard to compute?

Example: Turán Theorem

- Any graph G = (V, E) contains an independent set of size at least $\frac{|V|}{D+1}$, where $D = \frac{2|E|}{|V|}$
- Expectation argument: the expected size of an independent set S is at least $\frac{|V|}{D+1}$
- Randomly choose vertices into *S* one by one

• Try the de-randomization routine

Idea of the algorithm (1)

- Choose valid vertices sequentially
- At step t + 1, find u to maximize E[Q|S^(t), u]
 -S^(t): the independent set at step t
 -Q: the size of the final independent set
- Hard to compute the expectation \otimes

$$-\mathbb{E}[Q] \ge \sum \frac{1}{d(w)+1} \ge \frac{|V|}{D+1}$$

• It suffices to show $\mathbb{E}[Q|S^{(t)}] \ge \frac{|V|}{D+1}$ for any t

Idea of the algorithm (2)

- Note that $\mathbb{E}[Q|S^{(t)}] \ge |S^{(t)}| + \sum_{w \in R^{(t)}} \frac{1}{d(w)+1} \triangleq X^{(t)}$ - $R^{(t)}$: set of vertices out of the neighborhood of $S^{(t)}$
- $X^{(0)} \ge \frac{|V|}{D+1} \Rightarrow$ it's enough if $X^{(t)}$ is non-decreasing - Can we achieve this?
- If at step t + 1, $u \in R^{(t)}$ is chosen, $X^{(t+1)} - X^{(t)} = 1 - \sum_{w \in \Gamma^+(u)} \frac{1}{d(w)+1}$ Can it be non-negative?
- $\sum_{u \in R^{(t)}} \left(1 \sum_{w \in \Gamma^+(u)} \frac{1}{d(w) + 1} \right) \ge \left| R^{(t)} \right| \sum_{w \in R^{(t)}} \frac{d(w) + 1}{d(w) + 1} = 0$
- So, there is u s.t. $X^{(t+1)} \ge X^{(t)}$
 - Any $u \in R^{(t)}$ that minimizes $\sum_{w \in \Gamma^+(u)} \frac{1}{d(w)+1}$ works

A deterministic algorithm

- Initialize S to be the empty set
- While there is a vertex $u \notin \Gamma(S)$
 - Add to S such a vertex u which minimizes $\sum_{w \in \Gamma^+(u)} \frac{1}{d(w)+1}$
- Return S

- Paul Turán (1910 1976)
- Hungarian mathematician
- Founder of

Probabilistic number theory Extremal graph theory (in Nazi Camp)

Sample

Sample and Modify

Big Chromatic Number and Big Girth

- Chromatic number vs local structure
 - Sparse local structure → small chro. number?
 No! (Erdős 1959)
- One of the first applications of prob. Method
- Theorem: for any integers g, k > 0, there is a graph with girth $\geq g$ and chro. number $\geq k$
- We just prove the special case g = 4, i.e. triangle-free

Basic Idea of the Proof

- Randomly pick a graph G from $G_{n,p}$
 - $-\chi(G)$: the chromatic number of G
 - $\mathbb{I}(G)$: the size of a maximum independent set of G
- With high probability $\mathbb{I}(G)$ is small $-\mathbb{I}(G)\chi(G) \ge n$ implies that $\chi(G)$ is big
- With high probability G has few triangles
- Destroy the triangles while keeping I(G) small

Proof: I(G) is small w.h.p.

- S: a vertex set of size $\frac{n}{2k}$
- *A_S*: *S* is an independent set
- $\Pr\left(\mathbb{I}(G) \ge \frac{n}{2k}\right) = \Pr\left(\bigcup_{S} A_{S}\right)$ $\leq {\binom{n}{n/2k}} (1-p)^{\binom{n/2k}{2}}$ $< 2^{n} e^{-\frac{pn(n-2k)}{8k^{2}}}$

which is small if n is large and $p = \omega(n^{-1})$

Proof: triangles are few w.h.p.

- $\mathcal{T}(G)$: the number of triangles of G
- $\mathbb{E}[\mathcal{T}(G)] = \binom{n}{3}p^3 < \frac{(np)^3}{6} = \frac{n}{6} \text{ if } p = n^{-\frac{2}{3}}$
- By Markov ineq., $\Pr\left(\mathcal{T}(G) > \frac{n}{2}\right) \le \frac{1}{3}$
- Recall $\Pr\left(\mathbb{I}(G) \ge \frac{n}{2k}\right) < 2^n e^{-\frac{pn(n-2k)}{8k^2}}$

$$< e^n e^{-\frac{pn^2}{16k^2}} = e^{n-n^{\frac{4}{3}}/16k^2}$$
 if $n > 4k$
 $< e^{-n} < \frac{1}{6}$ if $n^{1/3} \ge 32k^2$

Proof: modification

•
$$\Pr\left(\mathbb{I}(G) < \frac{n}{2k}, \mathcal{T}(G) \le \frac{n}{2}\right) > \frac{1}{2}$$

- Choose G s.t. $\mathbb{I}(G) < \frac{n}{2k}, \mathcal{T}(G) \le \frac{n}{2}$

• Remove one vertex from each triangle of G, resulting in a graph G' with $n' \ge n - \mathcal{T}(G)$

•
$$\mathbb{I}(G') \leq \mathbb{I}(G) < \frac{n}{2k}$$

•
$$\chi(G') \ge \frac{n'}{\mathbb{I}(G')} \ge \frac{n - \mathcal{T}(G)}{\frac{n}{2k}} \ge k$$

Algorithm for finding such a graph

- Fix $n^{1/3} \ge 32k^2$ and $p = n^{-2/3}$
- Sample G from $G_{n,p}$
- Destroy the triangles

Success probability > ¹/₂

• Do you have any idea of de-randomizing?

References

 <u>http://www.cse.buffalo.edu/~hungngo/classe</u> s/2011/Spring-694/lectures/sm.pdf

<u>http://www.openproblemgarden.org/</u>

 Documentary film of Erdős: N is a Number - A Portrait of Paul Erdős

Thank you!