Probabilistic Method and Random Graphs

Lecture 11. De-randomization and Sample&Modify
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1The slides are mainly based on Chapter 6 of Probability and Computing.



Comments, questions, or suggestions?



A Review of Lecture 10

* Principle of probabilistic method
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* Counting: Tournament, Ramsey number

 First moment method: Max-3SAT
— Expectation argument: Pr(X > E[X]) > 0,Pr(X < E[X]) > 0

— Markov’s inequality: Pr(X > a) < %

Pr(X#0) =Pr(X >0) =Pr(X = 1) < E[X]



A Review of Lecture 10

 How to find a desirable object? By sampling!
* Algorithmic paradigm



A Review of Lecture 10

 How to find a desirable object? By sampling!
* Algorithmic paradigm
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* First moment method guarantees efficiency



Expectation argument

e Turan Theorem

— Any graph G=(V,E) contains an independent set of

4 2|E
sl , Where D = 2B
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* Proof: Consider the following random process
for constructing an independent set S
— Initialize S to be the empty set

— Repeat: Remove S and its neighbors; randomly
choose a remaining vertex u

— Return S

size at least



Proof (Continued)

S is an independent set

Vertex u is selected with probability =

— See the next slide

So, E[ISI] = ¥ o ——

S v
D+

1
d(u)+1

due to convexity

Remark: probability of sampling a good

independent set is =

1

2D|V|?



1
d(u)+1

Proof: Pr(u is selected)>

* u is selected if and only if A occurs

— A: when sampling first occurs in the neighborhood
of u, u rather than its neighbors is sampled

* Neighborhood: u and its then-valid neighbors

— Denote the neighborhood by N, and the number of
then-valid neighbors by x. Note that x < d(u)
* Pr(A) = Pr(uis chosen|sampling occurs in N)
NG

Cox+1 d(u)+1




* Cool to get an efficient randomized algorithm

e Can we derive a deterministic one?

* Yes, if expectation argument is used



De-randomization: an example

MAX-3SAT: Given a 3-CNF Boolean formula, find
a truth assignment satisfying the maximum
number of clauses

— Eg (xlv X9 VXB) /\ /\(x1 VX3 VX4_)

7 o
Known: at least gn clauses can be satisfied

Randomized algo. to find a good assignment
— Independently, randomly assign values to variables
— Succeed if lucky

e Can we make good choice, rather than pray for luck?



Look closer at the randomized algorithm

* |n equivalence, choose values sequentially

* Good choices lead to a good final result

— Which choice is good?
* Easy to know with hindsight, but how to predict

— A tentative approach: always make the choice which
allows a good final result

7n . 7
* Fact: a 5 expect. means the existence of a 5-approx.

: : : 7
* Make the current choice, keeping the expectation > ?n

— Nice, but does such a choice exist? How to find it?



Conditional expectation says yes!

The first step
n
- — [E[X] =[Zv1 Pr(x; = Ul)][E[Xlxl = vl]
— There must be vy s.t. E[X|x; = v4] = %n
. . = 7
Likewise, if E[X|x; = vq, .., Xk—q = V1] = ?Tl' then

7n
E[X|x1 = vy, .., X = Vg ] = ?for some vy,
Final correctness

— XXy =V, 0, Xy = V) = E[X|xy =V, 00, Xy = V] 2

Given vy, ..., Vp_1, What’s the v, ?
o Letvys.t. E[X|x; = vq, ..., X = V] is maximized

m
8



Deterministic %—algorithm for MAX-3SAT

Fork=1:--mdo

Assign to x; the value v, that maximizes
E[X|xy = vy, oo X1 = Vg1, X = V]
Endfor

* Cool! And this approach can be generalized



De-randomization via conditional expectation

Expectation argument=deterministic algorithm

Basic idea
— Expectation argument guarantees existence

— Sequentially make deterministic choices
* Each choice maintains the expectation, given the past ones

Only valid for expectation argument where
randomness lies in a sequence of random variables

What if the expectation is hard to compute?
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Example: Turan Theorem

Any graph G = (V, E) contains an independent

% 2|E
V] ,Where D = 2IE]
D+1’ V|

set of size at least —

Expectation argument: the expected size of an

14
independent set S is at least — v

Randomly choose vertices into S one by one

Try the de-randomization routine



ldea of the algorithm (1)

Choose valid vertices sequentially

At step t 4+ 1, find u to maximize IE[Q|S(t),u]

— S®): the independent set at step ¢
— (): the size of the final independent set

Hard to compute the expectation ®
1 v

—-E[Q] = X =T

- “dw)+1  D+1

- 14
[t suffices to show IE[Q |S(t)] =T forany t



ldea of the algorithm (2)

Note that E[Q|S®] = |S®| + ¥

1

weR® gw)+1 ~

a y(t)

— R: set of vertices out of the neighborhood of $®

14

X0 >
D+1

— Can we achieve this?

P ero (12
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If atstept + 1, u € R is chosen,
XD _x® — 1 ¥

1
WEL™ (W) g(w)+1

) 2 RO| -3

So, there is u s.t. X(t+1) > x(®
— Any u € R® that minimizes Y.

1
wert (u) d(w)+1

= it’s enough if XV is non-decreasing

Can it be non-
1 negative?

WEL™ (W) g(w)+1

dw)+1
weR® gw)+1 —

works
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A deterministic algorithm

* |nitialize S to be the empty set

* While there is a vertexu & I'(S)

— Add to S such a vertex u which minimizes
1
Lwert () d(w)+1

e Return S




* Paul Turan (1910 -1976)
* Hungarian mathematician
* Founder of

Probabilistic number theory

Extremal graph theory
(in Nazi Camp)
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Sample and Modify
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space
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23



Big Chromatic Number and Big Girth

Chromatic number vs local structure

— Sparse local structure — small chro. number?
— No! (Erd6s 1959)

One of the first applications of prob. Method

Theorem: for any integers g, k >0, there is a
graph with girth> g and chro. number= k

We just prove the special case g = 4, i.e.
triangle-free



Basic Idea of the Proof

Randomly pick a graph G from Gn,p

— x(G): the chromatic number of G
— [(G): the size of a maximum independent set of ¢

With high probability I(G) is small

—1(G)x(G) = nimplies that y(G) is big

With high probability G has few triangles
Destroy the triangles while keeping I(G) small



Proof: I(G) is small w.h.p.

. n
e §:avertex set of size P

* Ac: S isanindependent set

+ Pr(I(G) 2 =) = Pr(Us 4)
n/zk)

< (o) 1=

_pn(n—_zk)
< 2"e  s8k?

which is small if nis largeand p = w(n™1)




Proof: triangles are few w.h.p.

* 7(G): the number of triangles of G

n 2

3 —_—
» E[7(6)] = (3)p* < (m;) =—ifp=ns

* By Markov ineq., Pr (T(G) > g) < §

__pn(n—2k)

e Recall Pr (H(G) > ) < 2"e  s8k?

pn 4 5
< eM e 16k2 = N N3/16K" i S Ak

<e M« g if n1/3 > 32k2
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Proof: modification

Pr(1(G) < -, T(6) <3) >3

— Choose G s.t. I(G) < %,T(G) < %

Remove one vertex from each triangle of G,
resulting in a graph G'withn' > n — 7(G)

I(G) < 1(G) < %

n_>2TO s
1G") L

x(G') =



Algorithm for finding such a graph

Fix n/3 > 32k?andp = n~?/3
Sample G from G,, ,,
Destroy the triangles

Success probability > %

Do you have any idea of de-randomizing?



References

e http://www.cse.buffalo.edu/~hungngo/classe

s/2011/Spring-694/lectures/sm.pdf

* http://www.openproblemgarden.org/

 Documentary film of Erdds: N is a Number - A
Portrait of Paul Erdds
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Thank you!



