Probabilistic Method and Random Graphs
 Lecture 10. The Method of Counting\&Expectation

Xingwu Liu

Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China

${ }^{1}$ The slides are mainly based on Chapter 6 of Probability and Computing.

Recap of Lecture 9

- Threshold phenomenon in E-R random graphs
- Sharp threshold function of connectivity: $\frac{\ln n}{n}$ - That of the existence of major component : $\frac{1}{n}$ - Threshold function of cycles: $\frac{1}{n}$
- W.h.p. a Hamiltonian cycle can be found in time $O(n \ln n)$ in $\mathcal{G}_{n, p}$ with $p \geq 40 \frac{\ln n}{n}$
- Independent adjacency list model

Recap of Lecture 9

- Though elegant, E-R model is not practical
- It can't be both sparse and heterogenous
- Random graphs with fixed degree distribution - Bollobas, about 1980
- Preferential attachment model
- Barabasi\&Albert, 1999
- Rewired ring model
- Watts\&Strogatz, 1998

Probabilistic Method -Elegance from graph theory

- A warm-up example:
- n players against each other - "Top-k" players get prize

	G1	G2	G3	G4	G5	Score
G1		$3: 1$	$5: 3$	$4: 2$	$0: 1$	3
G2			$1: 3$	$3: 2$	$2: 1$	2
G3				$0: 2$	$1: 0$	2
G4				$3: 2$	2	
G5					1	

- But, are you sure no controversy exists?
- Controversy: a loser defeated all prize-winners
- Unfortunately, when k is small and n is big, controversy does exist w.h.p.
$-k=1$. Controversy exists unless the prize-winner defeated all the other plays

Proof (non-constructive)

Theorem: For small k and big n, controversy exists w.h.p.

- S : random k-subset of players
- A_{S} : no controversy if S get prize
- i.e. no another player defeated all players in S
- Consider a random tournament
- $\operatorname{Pr}\left(A_{S}\right)=\left(1-2^{-k}\right)^{n-k}$
- $\operatorname{Pr}($ no controversy $) \leq \operatorname{Pr}\left(\cup A_{S}\right) \leq \sum \operatorname{Pr}\left(A_{S}\right)$

$$
\begin{aligned}
& =\binom{n}{k}\left(1-2^{-k}\right)^{n-k} \\
& =o\left(\frac{1}{n}\right)
\end{aligned}
$$

- Find a controversial one? Just sampling

Cool?

A piece of cake in probabilistic method!

What is the Probabilistic Method?

- Proving the existence of an object that satisfies a certain property, without constructing it
- Underlying principle

$$
\begin{gathered}
\hline \text { Probability } \\
\text { space of all } \\
\text { objects } \\
\hline
\end{gathered}
$$

Nonzero probability of satisfying the property

Existence

- Pioneered by Erdős in 1940's

What is the Probabilistic Method?

- Proving the existence of an object that satisfies a certain property, without constructing it
- Underlying principle

$$
\begin{gathered}
\hline \text { Probability } \\
\text { space of all } \\
\text { objects } \\
\hline
\end{gathered}
$$

Existence

- Pioneered by Erdős in 1940’s
- Naturally lead to (randomized) algorithms

Main Probabilistic Methods

- Counting argument
- First-moment method
- Second-moment method
- Higher-moment method
- Lovasz local lemma

Counting Argument

- Construct a probability space and calculate the probability
- Algorithm design: sampling
- Application
- Tournament
- Ramsey number: an observation by S. Szalai, 1950's

Ramsey Number

- Given integers $k, l, n, 2$-color the edges of $K(n)$
- Is there a red $K(k)$ or a blue $K(l)$?
- Not guaranteed for small n
- Ramsey number $R(k, l)$
- the smallest n such that any 2 -coloring of $K(n)$ must have a red $K(k)$ or a blue $K(l)$

Some coloring of $K(n)$ has no red $K(k)$ or blue $K(l)$
$R(k, l)$
Any coloring of $K(n)$ has a red $K(k)$ or a blue $K(l)$

Ramsey Number is Well Defined

- Ramsey Theorem: $R(k, l)$ is finite for any k, l
- Ramsey proved it in 1930 and determined $R(3,3)=6$
- Origin of Ramsey theory
- The existence of rather big good substructure in a large structure
- How much is $R(k, l)$?

Ramsey Number is Well Defined

- Ramsey Theorem: $R(k, l)$ is finite for any k, l
- Ramsey proved it in 1930 and determined $R(3,3)$
- Origin of Ramsey theory
- The existence of rather big good substructure in a large structure
- How much is $R(k, l)$?
- Upper bound: $R(k, l) \leq R(k-1, l)+R(k, l-1)$
- Proved by P. Erdős and G. Szekeres in 1935
- The $2^{\text {nd }}$ cornerstone of Ramsey theory
$-\operatorname{By} R(k, 2)=R(2, k)=k, R(k, l) \leq\binom{ k+l-2}{k-1}$
- It implies $R(k, k) \leq 4^{k}$
- Best: $k^{-c \frac{\ln k}{\ln \ln k}} 4^{k}$ by Conlon in 2009, $k^{-c \ln k} 4^{k}$ by Sah in 2020

Known bounding ranges

s	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1
2		2	3	4	5	6	7	8	9	10
3			6	9	14	18	23	28	36	40-42
4				18	$25^{[5]}$	36-41	49-61	$59{ }^{[10]}$-84	73-115	92-149
5					43-48	58-87	80-143	101-216	133-316	$149{ }^{[10]}-442$
6				,		102-165	$115{ }^{[10]}$ 298	134 ${ }^{[10]}-495$	183-780	204-1171
7							205-540	217-1031	252-1713	292-2826
8					201			282-1870	329-3583	343-6090
9					1997				565-6588	581-12677
10										798-23556

Vigleik Angeltveit; Brendan McKay (2017). " $R(5,5) \leq 48$ ". arXiv

Proof of the upper bound

Theorem: $R(k, l) \leq R(k-1, l)+R(k, l-1)$

- 2-color the complete graph on $R(k-1, l)+$ $R(k, l-1)$ vertices
- Pick a vertex u. Define subgraphs G_{r} and G_{b} :

$$
-\forall v \neq u, v \in \begin{cases}G_{r} & \text { if }(u, v) \text { is red } \\ G_{b} & \text { if }(u, v) \text { is blue }\end{cases}
$$

- Either $\left|G_{r}\right| \geq R(k-1, l)$ or $\left|G_{b}\right| \geq R(k, l-1)$
- Do case-by-case analysis

Example: Ramsey Number $R(3,3)$

$$
R(3,3) \leq 6
$$

Actually, $R(3,3)>5$

Lower bound of $R(k, k)$

- $R(k, k)>2^{k / 2}=\sqrt{2}^{k}$ (Erdős, 1947)
- Best: $[1+o(1)] \frac{k}{e} \sqrt{2}^{1+k}$ by Spencer in 1975
- For any complete graph with at most $2^{k / 2}$ vertices, there is a 2 -coloring without monochromatic $K(k)$
- Prove by the probabilistic method

Prove $R(k, k)>2^{k / 2}$

- Randomly 2-color edges of $K(n)$
- Uniform distribution on all 2-coloring
- A_{S} : the subgraph on S is monochromatic
- S is a random k-subset of the vertices
- $\operatorname{Pr}\left(A_{S}\right)=2^{1-\binom{k}{2}}$
- $\operatorname{Pr}\left(\mathrm{U}_{S} A_{S}\right) \leq\binom{ n}{k} 2^{1-\binom{k}{2}}<\frac{2^{1+\frac{k}{2}}}{k!} \frac{n^{k}}{2^{\frac{k^{2}}{2}}}<1 \quad$ (If $\left.n=\left\lfloor 2^{k / 2}\right\rfloor\right)$
- $\operatorname{Pr}\left(\cap_{S} \overline{A_{S}}\right)>0$, so there is a coloring avoiding all A_{S}

Randomized Algorithms

- But how to find a good coloring? By sampling!
- General approach

Sample

Monte Carlo

Randomized Algorithms

- But how to find a good coloring? By sampling!
- General approach

- Prerequisites
- Efficient sampling
- Small probability of failure
- Efficient verification (Las Vegas only)

First-Moment method

- Use the expectation in probabilistic reasoning
- Two types of first-moment method
- Expectation argument

$$
\operatorname{Pr}(X \geq \mathbb{E}[X])>0, \operatorname{Pr}(X \leq \mathbb{E}[X])>0
$$

- Markov's inequality for non-negative X
- $\operatorname{Pr}(X \geq a) \leq \frac{\mathbb{E}[X]}{a}$
- When X is integer-valued,

$$
\operatorname{Pr}(X \neq 0)=\operatorname{Pr}(X>0)=\operatorname{Pr}(X \geq 1) \leq \mathbb{E}[X]
$$

First-Moment argument

- 3-CNF Boolean formula

$$
-\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge \ldots \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee x_{4}\right)
$$

- For such a formula, at most how many clauses can be satisfied simultaneously?
- MAX-3SAT is NP-hard

First-Moment argument

-3-CNF Boolean formula

$$
-\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge \ldots \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee x_{4}\right)
$$

- Theorem: there is a truth assignment which satisfies $\geq \frac{7}{8}$-fraction of the clauses
- Proof: -Randomly assign truth values to each variable -Define r.v. X_{i} indicating whether clause i is true $-\mathbb{E}\left[X_{i}\right]=\frac{7}{8} \Rightarrow \mathbb{E}[X]=\frac{7}{8} n$ with $X=\sum_{i=1}^{n} X_{i}$ -The theorem holds since $\operatorname{Pr}(X \geq \mathbb{E}[X])>0$

Remark

- Probability of sampling a good truth assignment
$\geq \frac{1}{n+1}$, leading to an efficient alg.
- Optimum, since impossible to get a $\left(\frac{7}{8}+\varepsilon\right)$-approx.
- J. Hastad. Some optimal inapproximability results. STOC 1997

Proof of $\operatorname{Pr}\left(\sum X_{i} \geq \frac{7}{8} n\right) \geq \frac{1}{n+1}$

- Let $X=\sum X_{i}$ and $p=\operatorname{Pr}\left(X \geq \frac{7}{8} n\right)$
- $\frac{7}{8} n=\mathbb{E}[X]$

$$
\begin{aligned}
& =\sum_{i<\frac{7}{8} n} i * \operatorname{Pr}(X=i)+\sum_{i \geq \frac{7}{8} n} i * \operatorname{Pr}(X=i) \\
& \leq\left(\frac{7}{8} n-\frac{1}{8}\right)(1-p)+n p \\
& =\frac{7}{8} n-\frac{1}{8}+\frac{n+1}{8} p
\end{aligned}
$$

Expectation argument

- Turán Theorem
- Any graph $G=(V, E)$ contains an independent set of size at least $\frac{|V|}{D+1}$, where $D=\frac{2|E|}{|V|}$
- Proof: Consider the following random process for constructing an independent set S :
- Initialize S to be the empty set
- Repeat: randomly choose a vertex u outside the neighbood of S and add u to S
- Return S

Proof (Continued)

- S is an independent set
- Vertex u is selected with probability $\geq \frac{1}{d(u)+1}$
- See the next slide
- So, $\mathbb{E}[|S|] \geq \sum \frac{1}{d(u)+1} \geq \frac{|V|}{D+1}$ due to convexity
- Remark: probability of sampling a good independent set is $\geq \frac{1}{2 D|V|^{2}}$

Proof: $\operatorname{Pr}(u$ is selected $) \geq \frac{1}{d(u)+1}$

- u is selected if and only if A occurs
- A : when sampling first occurs in the neighborhood of u, u rather than its neighbors is sampled
- Neighborhood: u and its then-valid neighbors
- Denote the neighborhood by N, and the number of then-valid neighbors by x. Note that $x \leq d(u)$
- $\operatorname{Pr}(A)=\operatorname{Pr}(u$ is chosen \mid sampling occurs in $N)$

$$
=\frac{1}{x+1} \geq \frac{1}{d(u)+1}
$$

References

- http://www.cse.buffalo.edu/~hungngo/classe s/2011/Spring-694/lectures/sm.pdf
- http://www.cse.cuhk.edu.hk/~chi/csc51602007/notes/Probabilistic.ppt
- Erdős. Graph theory and probability I. 1959
- Erdős. Graph theory and probability II. 1961
- Alon\&Krivelevich. Extremal and Probabilistic Combinatorics. 2006

