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Recap of Lecture 9

* Threshold phenomenon in E-R random graphs

Inn

— Sharp threshold function of connectivity: —

. M 1
— That of the existence of major component : n

1

— Threshold function of cycles: ~

 W.h.p. a Hamiltonian cycle can be found in
Inn

time O(nlnn) in G, , withp = 40—

n
— Independent adjacency list model



Recap of Lecture 9

Though elegant, E-R model is not practical

— |t can’t be both sparse and heterogenous
Random graphs with fixed degree distribution
— Bollobas, about 1980

Preferential attachment model

— Barabasi&Albert, 1999

Rewired ring model

— Watts&Strogatz, 1998



Probabilistic Method

-Elegance from graph theory

| | G1] 6263 Ga]Gs | score |
* A warm-up example: TR I 5 e
1:3 3.2 21 2
— n players against each other 3 02 10 2
o V4 . m 3:2 2
— “Top-k” players get prize = :

* But, are you sure no controversy exists?
— Controversy: a loser defeated all prize-winners

* Unfortunately, when k is small and n is big,
controversy does exist w.h.p.

— k = 1. Controversy exists unless the prize-winner
defeated all the other plays
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Proof (non-constructive)

Theorem: For small k and big n, controversy exists w.h.p.

S: random k-subset of players

As: no controversy if S get prize
— i.e. no another player defeated all players in §
Consider a random tournament

Pr(Ag) = (1 —27%)nk
Pr(no controversy) < Pr(U As) < YPr(4s)

- (o

(3

Find a controversial one? Just sampling



Cool?

A piece of cake in probabilistic method!
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What is the Probabilistic Method?

* Proving the existence of an object that satisfies a
certain property, without constructing it

* Underlying principle
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space of all probability Existence
objects of satisfying
/ X the property )

* Pioneered by Erdds in 1940’s




What is the Probabilistic Method?

Proving the existence of an object that satisfies a
certain property, without constructing it

Underlying principle
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( ole N
Probability Nobnzs,?)
space of all probability Existence
objects of satisfying
X the property )

Pioneered by Erdds in 1940’s
Naturally lead to (randomized) algorithms



Main Probabilistic Methods

* Counting argument
* First-moment method

e Second-moment method

— Higher-moment method

SWYlJIo3|Y

 Lovasz local lemma



Counting Argument

* Construct a probability space and calculate the
probability

* Algorithm design: sampling

* Application

— Ramsey number: an observation by S. Szalai, 1950’s
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Ramsey Number

* Given integers k, [, n, 2-color the edges of K(n)

* Isthereared K (k) orablue K([)?
* Not guaranteed for small n

* Ramsey number R(k, 1)

— the smallest n such that any 2-coloring of K (n)
must have ared K (k) or a blue K (1)

Some coloring of K(n) has Any coloring of K(n) has
no red K (k) or blue K (1) R<g ') ared K(k) or a blue K (1)

n




Ramsey Number is Well Defined

* Ramsey Theorem: R(k, ) is finite for any k, [

— Ramsey proved it in 1930 and determined R(3,3) = 6

— Origin of Ramsey theory
* The existence of rather big good substructure in a large structure

— How muchis R(k, [)?
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Ramsey Number is Well Defined

* Ramsey Theorem: R(k, ) is finite for any k, [

— Ramsey proved it in 1930 and determined R(3,3)

— Origin of Ramsey theory
* The existence of rather big good substructure in a large structure

— How muchis R(k, [)?

 Upperbound:R(k,l) <R(k—-1,1)+R(k,1l—1)
— Proved by P. ErdGs and G. Szekeres in 1935
— The 2" cornerstone of Ramsey theory

~ ByR(k,2) = R(2,k) = k, R(k, ) < (
— Itimplies R(k, k) < 4%

In k
« Best: k “mink 4K by Conlon in 2009, k~¢I" k4K by Sah in 2020

kl-cl—£—12)
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Vigleik Angeltveit; Brendan McKay (2017).
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Known bounding ranges
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https://en.wikipedia.org/wiki/ArXiv

Proof of the upper bound

Theorem: R(k,l) < R(k—1,1) + R(k,1l — 1)

* 2-color the complete graphon R(k —1,1) +
R(k,l — 1) vertices

* Pick a vertex u. Define subgraphs G, and G:

G, if(u, v)isred

TYVFLUE {Gb if (1, v) is blue

* Either |G| = R(k—1,0) or|Gy| = R(k, 1l —1)
* Do case-by-case analysis



Example: Ramsey Number R(3,3)

R(3,3) <6

Actually, R(3,3) > 5




Lower bound of R(k, k)

Kk
e R(k,k) > 2K/2 =+/2" (Erdés, 1947)
— Best: [1 + 0(1)] S\/fHk by Spencer in 1975

* For any complete graph with at most Qk/2
vertices, there is a 2-coloring without
monochromatic K (k)

* Prove by the probabilistic method



Prove R(k, k) > 2%/2

Randomly 2-color edges of K (n)
— Uniform distribution on all 2-coloring

Ag: the subgraph on S is monochromatic
— S is a random k-subset of the vertices

Pr(Ag) = 217 ()

k
21+§ nk

——2<l (ifn=[2"2])
_ 22
Pr(NgAs) > 0, so there is a coloring avoiding all Ag

k

Pr(Ug4g) < (2)21_(2) <




Randomized Algorithms

 But how to find a good coloring? By sampling!
* General approach

Monte Carlo



Randomized Algorithms

 But how to find a good coloring? By sampling!
* General approach

l
G Y

* Prerequisites
— Efficient sampling
— Small probability of failure
— Efficient verification (Las Vegas only)

— e o o o . e
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First-Moment method

e Use the expectation in probabilistic reasoning

* Two types of first-moment method

— Expectation argument
Pr(X = E[X]) > 0,Pr(X < E[X]) >0

— Markov’s inequality for non-negative X
E[X]

a
* When X is integer-valued,

Pr(X+0)=Pr(X>0)=Pr(X =21) < E[X]

*Pr(iX=a) <




First-Moment argument

* 3-CNF Boolean formula
= (Xx1Vx Vx3) A A VsV xy)

* For such a formula, at most how many clauses
can be satisfied simultaneously?
— MAX-3SAT is NP-hard




First-Moment argument

* 3-CNF Boolean formula
= (Xx1Vx Vx3) A A VsV xy)
 Theorem: there is a truth assignment which

. 7 .
satisfies = = -fraction of the clauses

* Proof: -Randomly assign truth values to each variable
-Define r.v. X; indicating whether clause i is true

E[X;] = g = E[X] = gn with X = Y™ X;
-The theorem holds since Pr(X = E[X]) > 0



Remark

Probability of sampling a good truth assignment

1

> ——, leading to an efficient alg.
n+1

— Optimum, since impossible to get a (g + 8)-approx.

 J. Hastad. Some optimal inapproximability results. STOC
1997



Proof of Pr (Z X; 2>

OOI\]

n) =
n+1

o Let X = ) X; andp—Pr(X % )

« —n = E|[X]
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l) + Zi>zni * PI'(X —
8

n—é)(l—p)+np

1, n+l

)
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Expectation argument

e Turan Theorem

— Any graph G=(V,E) contains an independent set of

4 2|E
sl , Where D = 2B
D+1 V|

* Proof: Consider the following random process
for constructing an independent set S
— Initialize S to be the empty set

— Repeat: randomly choose a vertex u outside the
neighbood of Sandadduto S

— Return S

size at least



Proof (Continued)

S is an independent set

Vertex u is selected with probability =

— See the next slide

So, E[ISI] = ¥ o ——

S v
D+

1
d(u)+1

due to convexity

Remark: probability of sampling a good

independent set is =

1

2D|V|?



1
d(u)+1

Proof: Pr(u is selected)>

* u is selected if and only if A occurs

— A: when sampling first occurs in the neighborhood
of u, u rather than its neighbors is sampled

* Neighborhood: u and its then-valid neighbors

— Denote the neighborhood by N, and the number of
then-valid neighbors by x. Note that x < d(u)
* Pr(A) = Pr(uis chosen|sampling occurs in N)
NG

Cox+1 d(u)+1
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