Probabilistic Method and Random Graphs Lecture 10. The Method of Counting&Expectation

Xingwu Liu

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

¹The slides are mainly based on Chapter 6 of Probability and Computing.

Recap of Lecture 9

• Threshold phenomenon in E-R random graphs

- Sharp threshold function of connectivity: $\frac{\ln n}{n}$

– That of the existence of major component : $\frac{1}{n}$

- Threshold function of cycles: $\frac{1}{n}$

• W.h.p. a Hamiltonian cycle can be found in time $O(n \ln n)$ in $\mathcal{G}_{n,p}$ with $p \ge 40 \frac{\ln n}{n}$ - Independent adjacency list model

Recap of Lecture 9

- Though elegant, E-R model is not practical
 It can't be both sparse and heterogenous
- Random graphs with fixed degree distribution
 Bollobas, about 1980
- Preferential attachment model
 - Barabasi&Albert, 1999
- Rewired ring model
 - Watts&Strogatz, 1998

Probabilistic Method -Elegance from graph theory

• A warm-up example:

-n players against each other

- "Top-k" players get prize

	G1	G2	G3	G4	G5	Score
G1		3:1	5:3	4:2	0:1	3
G2			1:3	3:2	2:1	2
G3				0:2	1:0	2
G4					3:2	2
G5						1

• But, are you sure no controversy exists?

- Controversy: a loser defeated all prize-winners

- Unfortunately, when k is small and n is big, controversy does exist w.h.p.
 - -k = 1. Controversy exists unless the prize-winner defeated all the other plays

Proof (non-constructive)

Theorem: For small k and big n, controversy exists w.h.p.

- *S*: random *k*-subset of players
- A_S: no controversy if S get prize

 i.e. no another player defeated all players in S
- Consider a random tournament

•
$$\Pr(A_S) = (1 - 2^{-k})^{n-k}$$

• $\Pr(\text{no controversy}) \leq \Pr(\bigcup A_S) \leq \sum \Pr(A_S)$

$$= \binom{n}{k} (1 - 2^{-k})^{n-k}$$
$$= o\left(\frac{1}{n}\right)$$

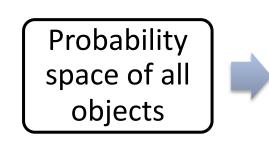
• Find a controversial one? Just sampling

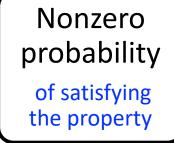
Cool?

A piece of cake in probabilistic method!

What is the Probabilistic Method?

- Proving the existence of an object that satisfies a certain property, without constructing it
- Underlying principle

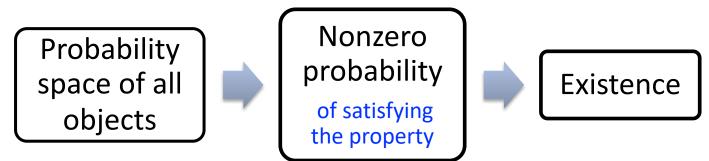




• Pioneered by Erdős in 1940's

What is the Probabilistic Method?

- Proving the existence of an object that satisfies a certain property, without constructing it
- Underlying principle



- Pioneered by Erdős in 1940's
- Naturally lead to (randomized) algorithms

Main Probabilistic Methods

- Counting argument
- First-moment method
- Second-moment method
 - Higher-moment method
- Lovasz local lemma

M rit В S

Counting Argument

 Construct a probability space and calculate the probability

• Algorithm design: sampling

- Application
 - Tournament
 - Ramsey number: an observation by S. Szalai, 1950's

Ramsey Number

- Given integers k, l, n, 2-color the edges of K(n)
 - Is there a red K(k) or a blue K(l)?
 - Not guaranteed for small *n*
- Ramsey number R(k, l)

- the smallest n such that any 2-coloring of K(n)must have a red K(k) or a blue K(l)

Some coloring of K(n) has no red K(k) or blue K(l) R(k, l) Any coloring of K(n) has a red K(k) or a blue K(l)

n

Ramsey Number is Well Defined

- Ramsey Theorem: R(k, l) is finite for any k, l
 - Ramsey proved it in 1930 and determined R(3,3) = 6
 - Origin of Ramsey theory
 - The existence of rather big good substructure in a large structure
 - How much is R(k, l)?

Ramsey Number is Well Defined

- Ramsey Theorem: R(k, l) is finite for any k, l
 - Ramsey proved it in 1930 and determined R(3,3)
 - Origin of Ramsey theory
 - The existence of rather big good substructure in a large structure
 - How much is R(k, l)?
- Upper bound: $R(k, l) \le R(k 1, l) + R(k, l 1)$
 - Proved by P. Erdős and G. Szekeres in 1935
 - The 2nd cornerstone of Ramsey theory
 - $\operatorname{By} R(k, 2) = R(2, k) = k, R(k, l) \le \binom{k+l-2}{k-1}$
 - It implies $R(k,k) \leq 4^k$
 - Best: $k^{-c \frac{\ln k}{\ln \ln k}} 4^k$ by Conlon in 2009, $k^{-c \ln k} 4^k$ by Sah in 2020

Known bounding ranges

r	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1
2		2	3	4	5	6	7	8	9	10
3			6	9	14	18	23	28	36	40-42
4				18	25 ^[5]	36–41	49–61	59 ^[10] -84	73–115	92–149
5					43-48	58–87	80–143	101–216	133–316	149 ^[10] -442
6				989		102–165	115 ^[10] –298	134 ^[10] -495	183–780	204–1171
7				565			205–540	217-1031	252-1713	292–2826
8					2017			282–1870	329-3583	343-6090
9					1997(49)			565-6588	581-12677
10					· · · ·					798-23556

Vigleik Angeltveit; Brendan McKay (2017). "R(5,5)≤48". <u>arXiv</u>

Proof of the upper bound

Theorem: $R(k, l) \le R(k - 1, l) + R(k, l - 1)$

- 2-color the complete graph on R(k 1, l) + R(k, l 1) vertices
- Pick a vertex u. Define subgraphs G_r and G_b :

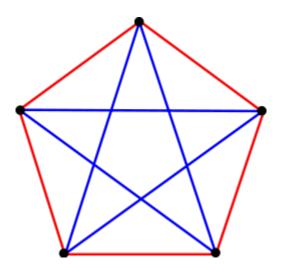
$$-\forall v \neq u, v \in \begin{cases} G_r & \text{if } (u, v) \text{ is red} \\ G_b & \text{if } (u, v) \text{ is blue} \end{cases}$$

- Either $|G_r| \ge R(k 1, l)$ or $|G_b| \ge R(k, l 1)$
- Do case-by-case analysis

Example: Ramsey Number R(3,3)

$R(3,3) \leq 6$

Actually, R(3,3) > 5



Lower bound of R(k,k)

• $R(k,k) > 2^{k/2} = \sqrt{2}^k$ (Erdős, 1947)

- Best: $[1 + o(1)] \frac{k}{e} \sqrt{2}^{1+k}$ by Spencer in 1975

- For any complete graph with at most 2^{k/2} vertices, there is a 2-coloring without monochromatic K(k)
- Prove by the probabilistic method

Prove $R(k, k) > 2^{k/2}$

- Randomly 2-color edges of K(n)
 - Uniform distribution on all 2-coloring
- A_S: the subgraph on S is monochromatic
 S is a random k-subset of the vertices

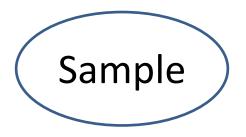
•
$$\Pr(A_S) = 2^{1 - \binom{k}{2}}$$

•
$$\Pr(\bigcup_{S} A_{S}) \le {\binom{n}{k}} 2^{1 - {\binom{k}{2}}} < \frac{2^{1 + \frac{k}{2}}}{k!} \frac{n^{k}}{2^{\frac{k^{2}}{2}}} < 1 \quad (\text{If } n = \lfloor 2^{k/2} \rfloor)$$

• $Pr(\bigcap_{S} \overline{A_{S}}) > 0$, so there is a coloring avoiding all A_{S}

Randomized Algorithms

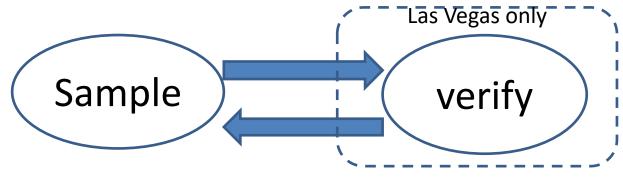
- But how to find a good coloring? By sampling!
- General approach



Monte Carlo

Randomized Algorithms

- But how to find a good coloring? By sampling!
- General approach



- Prerequisites
 - Efficient sampling
 - Small probability of failure
 - Efficient verification (Las Vegas only)

First-Moment method

- Use the expectation in probabilistic reasoning
- Two types of first-moment method
 - Expectation argument $Pr(X \ge \mathbb{E}[X]) > 0, Pr(X \le \mathbb{E}[X]) > 0$
 - Markov's inequality for non-negative X

•
$$\Pr(X \ge a) \le \frac{\mathbb{E}[X]}{a}$$

• When X is integer-valued, $Pr(X \neq 0) = Pr(X > 0) = Pr(X \ge 1) \le \mathbb{E}[X]$

First-Moment argument

• 3-CNF Boolean formula

 $-(x_1 \lor x_2 \lor x_3) \land \dots \land (\overline{x_1} \lor \overline{x_3} \lor x_4)$

• For such a formula, at most how many clauses can be satisfied simultaneously?

– MAX-3SAT is NP-hard

First-Moment argument

• 3-CNF Boolean formula

 $-(x_1 \lor x_2 \lor x_3) \land \dots \land (\overline{x_1} \lor \overline{x_3} \lor x_4)$

- Theorem: there is a truth assignment which satisfies $\geq \frac{7}{8}$ -fraction of the clauses
- Proof: -Randomly assign truth values to each variable -Define r.v. X_i indicating whether clause i is true $-\mathbb{E}[X_i] = \frac{7}{8} \Rightarrow \mathbb{E}[X] = \frac{7}{8}n$ with $X = \sum_{i=1}^n X_i$ -The theorem holds since $\Pr(X \ge \mathbb{E}[X]) > 0$

Remark

- Probability of sampling a good truth assignment $\geq \frac{1}{n+1}$, leading to an efficient alg.
 - Optimum, since impossible to get a $\left(\frac{7}{8} + \varepsilon\right)$ -approx.
 - J. Hastad. Some optimal inapproximability results. STOC 1997

Proof of $\Pr\left(\sum X_i \ge \frac{7}{8}n\right) \ge \frac{1}{n+1}$

• Let $X = \sum X_i$ and $p = \Pr\left(X \ge \frac{7}{8}n\right)$

•
$$\frac{7}{8}n = \mathbb{E}[X]$$

$$= \sum_{i < \frac{7}{8}n} i * \Pr(X = i) + \sum_{i \ge \frac{7}{8}n} i * \Pr(X = i)$$

$$\leq \left(\frac{7}{8}n - \frac{1}{8}\right) (1 - p) + np$$

$$= \frac{7}{8}n - \frac{1}{8} + \frac{n+1}{8}p$$

Expectation argument

• Turán Theorem

- Any graph G = (V, E) contains an independent set of size at least $\frac{|V|}{D+1}$, where $D = \frac{2|E|}{|V|}$

- Proof: Consider the following random process for constructing an independent set *S*:
 - Initialize S to be the empty set
 - Repeat: randomly choose a vertex u outside the neighbood of S and add u to S
 - Return S

Proof (Continued)

- *S* is an independent set
- Vertex u is selected with probability $\geq \frac{1}{d(u)+1}$ - See the next slide

• So,
$$\mathbb{E}[|S|] \ge \sum \frac{1}{d(u)+1} \ge \frac{|V|}{D+1}$$
 due to convexity

• **Remark:** probability of sampling a good independent set is $\geq \frac{1}{2D|V|^2}$

Proof: $\Pr(u \text{ is selected}) \ge \frac{1}{d(u)+1}$

- *u* is selected if and only if *A* occurs
 - -A: when sampling first occurs in the neighborhood of u, u rather than its neighbors is sampled
 - Neighborhood: u and its then-valid neighbors
 - Denote the neighborhood by N, and the number of then-valid neighbors by x. Note that $x \leq d(u)$
- Pr(A) = Pr(u is chosen | sampling occurs in N)

$$=\frac{1}{x+1} \ge \frac{1}{d(u)+1}$$

References

- <u>http://www.cse.buffalo.edu/~hungngo/classe</u> <u>s/2011/Spring-694/lectures/sm.pdf</u>
- <u>http://www.cse.cuhk.edu.hk/~chi/csc5160-</u>
 <u>2007/notes/Probabilistic.ppt</u>
- Erdős. Graph theory and probability I. 1959
- Erdős. Graph theory and probability II. 1961
- Alon&Krivelevich. Extremal and Probabilistic Combinatorics. 2006