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Important information

Course homepage

https://probabilityandgraphs.github.io/

Teaching assistant

Mengying Guo (guomengying@ict.ac.cn)
Zhenyu Sun (sunzhenyu19s@ict.ac.cn)
Office hours: TBD

Homework

Submit in PDF to: probabilitygraphs@163.com (auto-reply)
Deadline: 9:00am, Thursday

Grading policy

Homework+Attendance: 50%
Final exam (Open book): 50%

Warning: Enrolling in this course is at your own risk!
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The brilliant history of probability theory

Gamblers As long as human history?
Cardano 1564, “Book on Games of Chance”, a founder of

modern prob., Informal LLN, independence
Fermat&Pascal 1654, math. theory of probabilities, division of

stakes, expected values, argument of belief in God
Huygens 1657, On Reasoning in Games of Chance, systematic

treatise, division of stakes, expected values
Jacob Bernoulli 1713, Ars Conjectandi, a branch of mathematics,

Law of large numbers, Bernoulli trials
de Moivre 1718, The Doctrine of Chances, a branch of

mathematics, binomial≈normal
Gauss 18xx, application in astronomy, normal distribution

Laplace 1812, Theorie analytique des probabilites,
fundamental results: PGF, MLS, CLT

· · ·
Kolmogorov 1933, Foundations of the Theory of Probability,

modern axiomatic foundations
· · ·
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Wisdom of probability theory

Laplace(1745-1827)
Probability theory is nothing but
a formulation of common sense

Advice from this book: Part of the research process in random
processes is first to understand what is going on at a high level and
then to use this understanding in order to develop formal
mathematical proofs. ...To gain insight, you should perform
experiments based on writing code to simulate the processes.
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Why probability in CS: two fundamental ways

Algorithm design

Randomized

Probability-theory-based: statistical, derandomized · · ·
Quantum computing

Algorithm analysis

Average complexity

Smoothed complexity:
Spielman and Teng

Learning theory

No probability, no viability!
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Probability axioms and basic properties

A probability space (modeling a random process) has 3 elements

Sample space Ω 6= ∅ The set of possible outcomes

Event family F ⊆ 2Ω The set of eligible events, a σ-algebra

Prob. function Pr : F → R The likelihood of the events

Pr satisfies 3 conditions:

Range(Pr) ⊆ [0, 1]

Pr(Ω) = 1

Pr(
⋃

i≥1Ei) =
∑

i≥1 Pr(Ei) if the countably many events are
mutually disjoint

Remarks

We mainly consider the discrete case with F = 2Ω

Events are sets, so Venn diagrams will be used for intuition
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An example probability space

Coin flip

Ω = {H,T}
F = 2Ω

Pr({H}) = p,Pr({T}) = 1− p
Pr(Ω) = 1,Pr(∅) = 0
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Union bound

Pr(E1
⋃
E2) = Pr(E1) + Pr(E2)− Pr(E1

⋂
E2)

Inclusion-exclusion principle

Pr(
n⋃

i≥1
Ei) =

n∑
l=1

(−1)l−1
∑

i1<i2<...<il

Pr(
l⋂

r=1
Eir)

Union bound (Boole’s Inequality)

Pr(
⋃

i≥1Ei) ≤
∑

i≥1 Pr(Ei)

Bonferroni Inequalities

Pr(
n⋃

i≥1
Ei) ≤

r∑
l=1

(−1)l−1
∑

i1<i2<...<il

Pr(
l⋂

r=1
Eir) for odd r

Pr(
n⋃

i≥1
Ei) ≥

r∑
l=1

(−1)l−1
∑

i1<i2<...<il

Pr(
l⋂

r=1
Eir) for even r
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Independence and conditional probability

Definition: independent events

Pr(E
⋂
F ) = Pr(E) Pr(F )

Events E1, E2, ...Ek are mutually independent if for any
I ⊆ [1, k], Pr(

⋂
i∈I Ei) =

∏
i∈I Pr(Ei)

Definition: conditional probability

Pr(E|F ) = Pr(E
⋂

F )
Pr(F ) , well-defined if Pr(F ) 6= 0

Conditioning changes/restricts the sample space
Probability changes when more information is available

Corollary

Pr(E|F ) = Pr(E) if E and F are independent
Independence means that the probability of one event is not
affected by the information on the other
Chain rule: Pr(

⋂n
i=1Ai) =

∏n
i=1 Pr(Ai|

⋂i−1
j=1Aj)
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Basic laws

Law of total probability

If E1, E2, ...En are mutually disjoint and
⋃n

i=1Ei = Ω, then
Pr(B) =

∑n
i=1 Pr(B

⋂
Ei) =

∑n
i=1 Pr(B|Ei) Pr(Ei).

Example

Find the probability that the sum of n dice is divisible by 6.

Bayes’ Law

If E1, E2, ...En are mutually disjoint and
⋃n

i=1Ei = Ω, then

Pr(Ej |B) =
Pr(B|Ej) Pr(Ej)

Pr(B) =
Pr(B|Ej) Pr(Ej)∑n
i=1 Pr(B|Ei) Pr(Ei)

.
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It is time to solve a BIG Problem!

Monty Hall problem

First appeared at Ask Marilyn
column of Parade, 9.9.1990

See the demo

Named after the celebrated TV
host Monty Hall

Confusing, so that formal proofs
are not convincing (Paul Erdos &
Andrew Vazsonyi)

What’s your answer?

Marilyn in 2017

Monty in 1970’
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https://marilynvossavant.com/
http://www.stayorswitch.com
http://marilynvossavant.com/game-show-problem/


Solution to Monty Hall problem

Proof

Reference for a formal proof: The Monty Hall Problem, by
Afra Zomorodian, 1998

An intuitive proof: keeping for one door but switching for two

God is fair: smart Miss Marilyn made silly mistakes

January 22, 2012: How likely are you chosen over one year?

May 5, 2013: How many 4-digit briefcase combinations
contain a particular digit?

June 22, 2014: How many work hours is necessary?
6 together, but a 4-hour gap for each

January 25, 2015: Which salary options do you prefer?
Annual $1000 or semi-annual $300 raises
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Random variables and expectation

Random variable

A real-valued function on the sample space of a probability
space, X : Ω→ R

Random variables on this same probability space have both
functional operations and probability operations

Probability of a random variable

X = a stands for the event {s ∈ Ω|X(s) = a}
Pr(X = a) = Pr({s ∈ Ω|X(s) = a}) =

∑
s∈Ω:X(s)=a Pr(s)

Independent random variables

Pr((X = x)
⋂

(Y = y)) = Pr(X = x) Pr(Y = y)

Gengerally, Pr(
⋂

i∈I(Xi = xi)) =
∏

i∈I Pr(Xi = xi) for any I
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Expectation: a basic characteristic

Definition

E[X] =
∑

i∈Range(X) i ∗ Pr(X = i)

It’s finite if
∑

i∈Range(X) |i| ∗ Pr(X = i) converges

Linearity of expectation

E[
∑n

i=1 aiXi] =
∑n

i=1 aiE[Xi]

No independence is required

The only condition is that each E[Xi] is bounded

The most important property of expectation!

Product Counterpart

E[X ∗ Y ] = E[X]E[Y ] if they are independent.
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