## Probabilistic Method and

# Lecture 1. Elementary probability theory with applications ${ }^{1}$ 

Xingwu Liu

Institute of Computing Technology<br>Chinese Academy of Sciences, Beijing, China

${ }^{1}$ The slides are mainly based on Chapters 1 and 2 of Probability and Computing.

## Important information

Course homepage
https://probabilityandgraphs.github.io/

## Teaching assistant

Mengying Guo (guomengying@ict.ac.cn)
Zhenyu Sun (sunzhenyu19s@ict.ac.cn)
Office hours: TBD

## Homework

Submit in PDF to: probabilitygraphs@163.com (auto-reply) Deadline: 9:00am, Thursday

## Grading policy

Homework+Attendance: 50\%
Final exam (Open book): 50\%
Warning: Enrolling in this course is at your own risk!

## The brilliant history of probability theory

> Gamblers As long as human history?
> Cardano 1564, "Book on Games of Chance", a founder of modern prob., Informal LLN, independence
> Fermat\&Pascal 1654, math. theory of probabilities, division of stakes, expected values, argument of belief in God Huygens 1657, On Reasoning in Games of Chance, systematic treatise, division of stakes, expected values
> Jacob Bernoulli 1713, Ars Conjectandi, a branch of mathematics, Law of large numbers, Bernoulli trials
> de Moivre 1718, The Doctrine of Chances, a branch of mathematics, binomial $\approx$ normal
> Gauss 18 xx , application in astronomy, normal distribution
> Laplace 1812, Theorie analytique des probabilites, fundamental results: PGF, MLS, CLT

> Kolmogorov 1933, Foundations of the Theory of Probability, modern axiomatic foundations

## Wisdom of probability theory

Laplace(1745-1827)
Probability theory is nothing but
a formulation of common sense


Advice from this book: Part of the research process in random processes is first to understand what is going on at a high level and then to use this understanding in order to develop formal mathematical proofs. ...To gain insight, you should perform experiments based on writing code to simulate the processes.

## Why probability in CS: two fundamental ways

## Algorithm design

- Randomized
- Probability-theory-based: statistical, derandomized ...
- Quantum computing


## Algorithm analysis

- Average complexity
- Smoothed complexity:

Spielman and Teng

- Learning theory


No probability, no viability!

## Probability axioms and basic properties

A probability space (modeling a random process) has 3 elements Sample space $\Omega \neq \emptyset$ The set of possible outcomes
Event family $\mathcal{F} \subseteq 2^{\Omega}$ The set of eligible events, a $\sigma$-algebra
Prob. function $\operatorname{Pr}: \mathcal{F} \rightarrow R$ The likelihood of the events
Pr satisfies 3 conditions:

- Range $(\operatorname{Pr}) \subseteq[0,1]$
- $\operatorname{Pr}(\Omega)=1$
- $\operatorname{Pr}\left(\bigcup_{i \geq 1} E_{i}\right)=\sum_{i \geq 1} \operatorname{Pr}\left(E_{i}\right)$ if the countably many events are mutually disjoint


## Remarks

- We mainly consider the discrete case with $\mathcal{F}=2^{\Omega}$
- Events are sets, so Venn diagrams will be used for intuition


## An example probability space

## Coin flip

- $\Omega=\{H, T\}$
- $\mathcal{F}=2^{\Omega}$
- $\operatorname{Pr}(\{H\})=p, \operatorname{Pr}(\{T\})=1-p$ $\operatorname{Pr}(\Omega)=1, \operatorname{Pr}(\emptyset)=0$


## An example probability space

Coin flip

- $\Omega=\{H, T\}$
- $\mathcal{F}=2^{\Omega}$
- $\operatorname{Pr}(\{H\})=p, \operatorname{Pr}(\{T\})=1-p$

$$
\operatorname{Pr}(\Omega)=1, \operatorname{Pr}(\emptyset)=0
$$

## An example probability space

## Coin flip

- $\Omega=\{H, T\}$
- $\mathcal{F}=2^{\Omega}$
- $\operatorname{Pr}(\{H\})=p, \operatorname{Pr}(\{T\})=1-p$
$\operatorname{Pr}(\Omega)=1, \operatorname{Pr}(\emptyset)=0$

$p=1 / 2$ if the coin is unbiased.


## Union bound

$$
\operatorname{Pr}\left(E_{1} \bigcup E_{2}\right)=\operatorname{Pr}\left(E_{1}\right)+\operatorname{Pr}\left(E_{2}\right)-\operatorname{Pr}\left(E_{1} \bigcap E_{2}\right)
$$

Inclusion-exclusion principle

$$
\operatorname{Pr}\left(\bigcup_{i \geq 1}^{n} E_{i}\right)=\sum_{l=1}^{n}(-1)^{l-1} \sum_{i_{1}<i_{2}<\ldots<i_{l}} \operatorname{Pr}\left(\bigcap_{r=1}^{l} E_{i_{r}}\right)
$$

Union bound (Boole's Inequality)
$\operatorname{Pr}\left(\bigcup_{i \geq 1} E_{i}\right) \leq \sum_{i \geq 1} \operatorname{Pr}\left(E_{i}\right)$

## Bonferroni Inequalities

- $\operatorname{Pr}\left(\bigcup_{i \geq 1}^{n} E_{i}\right) \leq \sum_{l=1}^{r}(-1)^{l-1} \sum_{i_{1}<i_{2}<\ldots<i_{l}} \operatorname{Pr}\left(\bigcap_{r=1}^{l} E_{i_{r}}\right)$ for odd $r$
- $\operatorname{Pr}\left(\bigcup_{i \geq 1}^{n} E_{i}\right) \geq \sum_{l=1}^{r}(-1)^{l-1} \sum_{i_{1}<i_{2}<\ldots<i_{l}} \operatorname{Pr}\left(\bigcap_{r=1}^{l} E_{i_{r}}\right)$ for even $r$


## Independence and conditional probability

Definition: independent events

- $\operatorname{Pr}(E \bigcap F)=\operatorname{Pr}(E) \operatorname{Pr}(F)$
- Events $E_{1}, E_{2}, \ldots E_{k}$ are mutually independent if for any

$$
I \subseteq[1, k], \operatorname{Pr}\left(\bigcap_{i \in I} E_{i}\right)=\prod_{i \in I} \operatorname{Pr}\left(E_{i}\right)
$$

## Independence and conditional probability

Definition: independent events

- $\operatorname{Pr}(E \bigcap F)=\operatorname{Pr}(E) \operatorname{Pr}(F)$
- Events $E_{1}, E_{2}, \ldots E_{k}$ are mutually independent if for any

$$
I \subseteq[1, k], \operatorname{Pr}\left(\bigcap_{i \in I} E_{i}\right)=\prod_{i \in I} \operatorname{Pr}\left(E_{i}\right)
$$

Definition: conditional probability

- $\operatorname{Pr}(E \mid F)=\frac{\operatorname{Pr}(E \bigcap F)}{\operatorname{Pr}(F)}$, well-defined if $\operatorname{Pr}(F) \neq 0$
- Conditioning changes/restricts the sample space
- Probability changes when more information is available


## Independence and conditional probability

Definition: independent events

- $\operatorname{Pr}(E \bigcap F)=\operatorname{Pr}(E) \operatorname{Pr}(F)$
- Events $E_{1}, E_{2}, \ldots E_{k}$ are mutually independent if for any

$$
I \subseteq[1, k], \operatorname{Pr}\left(\bigcap_{i \in I} E_{i}\right)=\prod_{i \in I} \operatorname{Pr}\left(E_{i}\right)
$$

## Definition: conditional probability

- $\operatorname{Pr}(E \mid F)=\frac{\operatorname{Pr}(E \bigcap F)}{\operatorname{Pr}(F)}$, well-defined if $\operatorname{Pr}(F) \neq 0$
- Conditioning changes/restricts the sample space
- Probability changes when more information is available

Corollary

- $\operatorname{Pr}(E \mid F)=\operatorname{Pr}(E)$ if $E$ and $F$ are independent
- Independence means that the probability of one event is not affected by the information on the other
- Chain rule: $\operatorname{Pr}\left(\bigcap_{i=1}^{n} A_{i}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(A_{i} \mid \bigcap_{j=1}^{i-1} A_{j}\right)$


## Basic laws

## Law of total probability

If $E_{1}, E_{2}, \ldots E_{n}$ are mutually disjoint and $\bigcup_{i=1}^{n} E_{i}=\Omega$, then
$\operatorname{Pr}(B)=\sum_{i=1}^{n} \operatorname{Pr}\left(B \bigcap E_{i}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(B \mid E_{i}\right) \operatorname{Pr}\left(E_{i}\right)$.

## Example

Find the probability that the sum of $n$ dice is divisible by 6 .

## Basic laws

## Law of total probability

If $E_{1}, E_{2}, \ldots E_{n}$ are mutually disjoint and $\bigcup_{i=1}^{n} E_{i}=\Omega$, then
$\operatorname{Pr}(B)=\sum_{i=1}^{n} \operatorname{Pr}\left(B \bigcap E_{i}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(B \mid E_{i}\right) \operatorname{Pr}\left(E_{i}\right)$.

## Example

Find the probability that the sum of $n$ dice is divisible by 6 .

## Solution:

- $X_{k}$ : the result of the $k$-th roll for $1 \leq k \leq n$
- $Y_{k}=\sum_{i=1}^{k} X_{i}$ for $1 \leq k \leq n$
- $\operatorname{Pr}\left(Y_{n} \equiv 0 \bmod 6\right)=\sum_{i=1}^{6} \operatorname{Pr}\left(\left(Y_{n} \equiv 0 \bmod 6\right) \cap\left(X_{n}=i\right)\right)$
- Claim: $\operatorname{Pr}\left(\left(Y_{n} \equiv 0 \bmod 6\right) \cap\left(X_{n}=i\right)\right)$

$$
=\operatorname{Pr}\left(Y_{n-1} \equiv 6-i \bmod 6\right) \operatorname{Pr}\left(X_{n}=i\right)
$$

## Basic laws

## Law of total probability

If $E_{1}, E_{2}, \ldots E_{n}$ are mutually disjoint and $\bigcup_{i=1}^{n} E_{i}=\Omega$, then
$\operatorname{Pr}(B)=\sum_{i=1}^{n} \operatorname{Pr}\left(B \bigcap E_{i}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(B \mid E_{i}\right) \operatorname{Pr}\left(E_{i}\right)$.

## Bayes' Law

If $E_{1}, E_{2}, \ldots E_{n}$ are mutually disjoint and $\bigcup_{i=1}^{n} E_{i}=\Omega$, then
$\operatorname{Pr}\left(E_{j} \mid B\right)=\frac{\operatorname{Pr}\left(B \mid E_{j}\right) \operatorname{Pr}\left(E_{j}\right)}{\operatorname{Pr}(B)}=\frac{\operatorname{Pr}\left(B \mid E_{j}\right) \operatorname{Pr}\left(E_{j}\right)}{\sum_{i=1}^{n} \operatorname{Pr}\left(B \mid E_{i}\right) \operatorname{Pr}\left(E_{i}\right)}$.

## It is time to solve a BIG Problem!

- Monty Hall problem
- First appeared at Ask Marilyn column of Parade, 9.9.1990
- See the demo
- Named after the celebrated TV host Monty Hall
- Confusing, so that formal proofs are not convincing (Paul Erdos \& Andrew Vazsonyi)
- What's your answer?

Marilyn in 2017


Monty in 1970'


## Solution to Monty Hall problem

## Proof

- Reference for a formal proof: The Monty Hall Problem, by Afra Zomorodian, 1998
- An intuitive proof: keeping for one door but switching for two


## Solution to Monty Hall problem

## Proof

- Reference for a formal proof: The Monty Hall Problem, by Afra Zomorodian, 1998
- An intuitive proof: keeping for one door but switching for two


## God is fair: smart Miss Marilyn made silly mistakes

- January 22, 2012: How likely are you chosen over one year?
- May 5, 2013: How many 4-digit briefcase combinations contain a particular digit?
- June 22, 2014: How many work hours is necessary? 6 together, but a 4-hour gap for each
- January 25, 2015: Which salary options do you prefer? Annual $\$ 1000$ or semi-annual $\$ 300$ raises


## Random variables and expectation

Random variable

- A real-valued function on the sample space of a probability space, $X: \Omega \rightarrow R$
- Random variables on this same probability space have both functional operations and probability operations


## Random variables and expectation

## Random variable

- A real-valued function on the sample space of a probability space, $X: \Omega \rightarrow R$
- Random variables on this same probability space have both functional operations and probability operations


## Probability of a random variable

- $X=a$ stands for the event $\{s \in \Omega \mid X(s)=a\}$
- $\operatorname{Pr}(X=a)=\operatorname{Pr}(\{s \in \Omega \mid X(s)=a\})=\sum_{s \in \Omega: X(s)=a} \operatorname{Pr}(s)$


## Random variables and expectation

## Random variable

- A real-valued function on the sample space of a probability space, $X: \Omega \rightarrow R$
- Random variables on this same probability space have both functional operations and probability operations


## Probability of a random variable

- $X=a$ stands for the event $\{s \in \Omega \mid X(s)=a\}$
- $\operatorname{Pr}(X=a)=\operatorname{Pr}(\{s \in \Omega \mid X(s)=a\})=\sum_{s \in \Omega: X(s)=a} \operatorname{Pr}(s)$

Independent random variables

- $\operatorname{Pr}((X=x) \bigcap(Y=y))=\operatorname{Pr}(X=x) \operatorname{Pr}(Y=y)$
- Gengerally, $\operatorname{Pr}\left(\bigcap_{i \in I}\left(X_{i}=x_{i}\right)\right)=\prod_{i \in I} \operatorname{Pr}\left(X_{i}=x_{i}\right)$ for any $I$


## Expectation: a basic characteristic

Definition

- $\mathbb{E}[X]=\sum_{i \in \operatorname{Range}(X)} i * \operatorname{Pr}(X=i)$
- It's finite if $\sum_{i \in \operatorname{Range}(X)}|i| * \operatorname{Pr}(X=i)$ converges


## Expectation: a basic characteristic

## Definition

- $\mathbb{E}[X]=\sum_{i \in \operatorname{Range}(X)} i * \operatorname{Pr}(X=i)$
- It's finite if $\sum_{i \in \operatorname{Range}(X)}|i| * \operatorname{Pr}(X=i)$ converges


## Linearity of expectation

- $\mathbb{E}\left[\sum_{i=1}^{n} a_{i} X_{i}\right]=\sum_{i=1}^{n} a_{i} \mathbb{E}\left[X_{i}\right]$
- No independence is required
- The only condition is that each $\mathbb{E}\left[X_{i}\right]$ is bounded
- The most important property of expectation!


## Expectation: a basic characteristic

## Definition

- $\mathbb{E}[X]=\sum_{i \in \operatorname{Range}(X)} i * \operatorname{Pr}(X=i)$
- It's finite if $\sum_{i \in \operatorname{Range}(X)}|i| * \operatorname{Pr}(X=i)$ converges


## Linearity of expectation

- $\mathbb{E}\left[\sum_{i=1}^{n} a_{i} X_{i}\right]=\sum_{i=1}^{n} a_{i} \mathbb{E}\left[X_{i}\right]$
- No independence is required
- The only condition is that each $\mathbb{E}\left[X_{i}\right]$ is bounded
- The most important property of expectation!


## Product Counterpart

$\mathbb{E}[X * Y]=\mathbb{E}[X] \mathbb{E}[Y]$ if they are independent.

