Home Work of Week 8

Deadline: 9:00am, November 18 (Thursday), 2021

1. Recall that \mathcal{G}_{n} is the uniformly distributed n-vertex random graph, and that $\mathcal{G}_{n, p}$ is the n vertex random graph each of whose edge appears independently with probability p. Prove that \mathcal{G}_{n} and $\mathcal{G}_{n, \frac{1}{2}}$ are identically distributed.
2. Prove that for any $p \in(0,1)$ and positive integers m, n with $1 \leq m \leq\binom{ n}{2}$, random graphs $\mathcal{G}_{n, m}$ and $\mathcal{G}_{n, p} \mid$ (the number of edges is m) are identically distributed.
3. (Optional. Bonus score 5 points) We know that $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\mathcal{G}_{n, p}\right.$ has an isolated vertex) $=$ $1-e^{-e^{-c}}$ when $p=\frac{\ln n+c}{n}$. Based on this fact, prove that $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\mathcal{G}_{n, m}\right.$ has an isolated vertex $)=$ $1-e^{-e^{-c}}$ when $m=\frac{n \ln n+c n}{2}$. (Hint: it may be helpful to follow the basic idea in proving the similar result of coupon collector problem.)
4. Do Bernoulli experiment for 20 trials, using a new 1-Yuan coin. Record the result in a string $s_{1} s_{2} \ldots s_{i} \ldots s_{20}$, where s_{i} is 1 if the $i^{\text {th }}$ trial gets Head, and otherwise is 0 .
