Homework of Week 7

Deadline: 9:00am, November 11 (Thursday), 2021

1. (Optional. Bonus score 5 points) Let $X_{i}^{(m)}, 1 \leq i \leq n$, be the load of bin i in the (m, n)-Bins\&Balls model, and $Y_{1}^{(m)}, \cdots, Y_{n}^{(m)}$ are independent Poisson random variables each having expectation m / n. Assume that f is a nonnegative n-ary function. Prove that if $E\left[f\left(X_{1}^{(m)}, \ldots X_{n}^{(m)}\right)\right]$ is monotonically decreasing in m, then $E\left[f\left(X_{1}^{(m)}, \ldots X_{n}^{(m)}\right)\right] \leq$ $2 E\left[f\left(Y_{1}^{(m)}, \ldots Y_{n}^{(m)}\right)\right]$.
2. Consider the probability that every bin receives exactly one ball when n balls are thrown randomly into n bins.

- Give an upper bound on this probability using the condition-free Poisson approximation.
- Determine the exact probability of this event.

3. Bloom filters can be used to estimate set differences. Suppose Alice has a set X and Bob has a set Y, both with m elements. For example, the sets might represent their 100 favorite songs. Alice and Bob create Bloom filters of their sets respectively, using the same number n of bits and the same k hash functions. Determine the expected number of bits where our Bloom filters differ as a function of m, n, k and $|X \bigcap Y|$. Explain how this could be used as a tool to find people with the same taste in music more easily than comparing lists of songs directly.
4. Suppose there is a set of size m. Consider two approaches to hashing this set. One is a Bloom filter with n bits and $k=\frac{n}{m} \ln 2$ hash functions. The other is k independent Bloom filters, each having n^{\prime} bits and 1 hash function. Choose n^{\prime} such that the probabilities of false positive of the two approaches are equal. Compare n and $k n^{\prime}$.
5. Do Bernoulli experiment for 20 trials, using a new 1-Yuan coin. Record the result in a string $s_{1} s_{2} \ldots s_{i} \ldots s_{20}$, where s_{i} is 1 if the $i^{\text {th }}$ trial gets Head, and otherwise is 0 .
