Homework of Week 4

Deadline: 9:00am, October 21 (Thursday), 2021

1. Consider the following generalization of the set balancing problem. There are m objects and n features, with each object having some features. The objective is to partition the objects into two groups G_{1} and G_{2} such that every feature is $3: 1$ divided, i.e., for every feature, the number of objects in G_{1} having the feature is triple the number of objects in G_{2} having the feature. Please design an efficient randomized algorithm for this task, and show that the error is small with high probability when m and n are sufficiently large.
Hint: Obviously, the domain of the vector b should not be $\{-1,1\}^{m}$. The point is to find a suitable domain.
2. Suppose X is a Bernoulli random variable with $\operatorname{Pr}(X=1)=\frac{1}{2}$. Calculate $I\left(\frac{5}{6}\right) \triangleq$ $\sup _{\lambda>0} \frac{5 \lambda}{6}-\ln \mathbb{E}\left[e^{\lambda X}\right]$. Compare the result with 0.2426 .
3. Do Bernoulli experiment for 20 trials, using a new 1-Yuan coin. Record the result in a string $s_{1} s_{2} \ldots s_{i} \ldots s_{20}$, where s_{i} is 1 if the $i^{t h}$ trial gets Head, and otherwise is 0 .
