Homework of Week 13

Deadline: 9:00am, December 23 (Thursday), 2021

- 1. Let G = (V, E) be an undirected graph and suppose each $v \in V$ is associated with a set S(v) of 8r colors, where $r \geq 1$. Suppose, in addition, that for each $v \in V$ and $c \in S(v)$ there are at most r neighbors u of v such that c lies in S(u). Prove that there is a coloring of G which assigns to each vertex v a color from S(v) such that, for any edge $(u, v) \in E$, the colors assigned to u and v are different. [Let $A_{u,v,c}$ be the event that adjacent vertices u and v are both colored with color c and apply the symmetric Lovász Local Lemma.]
- 2. Suppose H is a hypergraph where each edge has r vertices and meets at most d other edges. Assume that $d \leq 2^{r-3}$. Prove that H is 2-colorable, i.e. one can color the vertices in red or blue so that no monochromatic edges exist.
- 3. Do Bernoulli experiment for 20 trials, using a new 1-Yuan coin. Record the result in a string $s_1s_2...s_i...s_{20}$, where s_i is 1 if the i^{th} trial gets Head, and otherwise is 0.