Homework of Week 13

Deadline: 9:00am, December 23 (Thursday), 2021

1. Let $G=(V, E)$ be an undirected graph and suppose each $v \in V$ is associated with a set $S(v)$ of $8 r$ colors, where $r \geq 1$. Suppose, in addition, that for each $v \in V$ and $c \in S(v)$ there are at most r neighbors u of v such that c lies in $S(u)$. Prove that there is a coloring of G which assigns to each vertex v a color from $S(v)$ such that, for any edge $(u, v) \in E$, the colors assigned to u and v are different. [Let $A_{u, v, c}$ be the event that adjacent vertices u and v are both colored with color c and apply the symmetric Lovász Local Lemma.]
2. Suppose H is a hypergraph where each edge has r vertices and meets at most d other edges. Assume that $d \leq 2^{r-3}$. Prove that H is 2 -colorable, i.e. one can color the vertices in red or blue so that no monochromatic edges exist.
3. Do Bernoulli experiment for 20 trials, using a new 1-Yuan coin. Record the result in a string $s_{1} s_{2} \ldots s_{i} \ldots s_{20}$, where s_{i} is 1 if the $i^{\text {th }}$ trial gets Head, and otherwise is 0 .
