Homework of Week 12

Deadline: 9:00am, December 16 (Thursday), 2021

1. Prove that, for every integer n, there exists a way to 2-color the edges of K_{x} so that there is no monochromatic clique of size k when $x=n-\binom{n}{k} 2^{1-\binom{k}{2}}$. Note that K_{x} stands for the x-vertex complete graph. (Hint, start by 2 -coloring the edges of K_{n} and fix things up.)
2. (Optional. Bonus score 5 points) Page 12 of Lecture 12 presents a randomized algorithm to find a graph with big chromatic number and big girth. Can you derive an efficient deterministic algorithm from it?
3. Consider a graph in $G_{n, p}$ with $p=c \frac{\ln n}{n}$. Use the second moment method to prove that if $c<1$ then, for any constant $\epsilon>0$ and for sufficiently large n, the graph has isolated vertices with probability at least $1-\epsilon$.
4. Do Bernoulli experiment for 20 trials, using a new 1-Yuan coin. Record the result in a string $s_{1} s_{2} \ldots s_{i} \ldots s_{20}$, where s_{i} is 1 if the $i^{\text {th }}$ trial gets Head, and otherwise is 0 .
