Homework of Week 11

Deadline: 9:00am, December 9 (Thursday), 2021

1. We mentioned a probabilistic proof of Turán theorem in the lecture notes. Recall the random process generating an independent set S. Let p be the probability that the independent set S has size at least $\frac{|V|}{D+1}$. Show that $p \geq \frac{1}{2 D|V|^{2}}$.
2. For every integer n, there exists a coloring of the edges of the complete graph K_{n} by two colors so that the total number of monochromatic copies of K_{4} is at most $\binom{n}{4} 2^{-5}$. Design a deterministic, efficient algorithm to find such a coloring.
3. (2 points) Given an n-vertex undirected graph $G=(V, E)$, consider the following method of generating an independent set. Given a permutation σ of the vertices, define a subset $S(\sigma)$ of the vertices as follows: for each vertex $i, i \in S(\sigma)$ if and only if no neighbor j of i precedes i in the permutation σ. Obviously, $S(\sigma)$ is an independent set in G.

- Propose a natural randomized algorithm to produce σ for which you can show that the expected cardinality of $S(\sigma)$ is $\sum_{i=1}^{n} \frac{1}{d_{i}+1}$, where d_{i} is the degree of vertex i.
- Design a deterministic, efficient algorithm to produce a permutation σ such that $S(\sigma) \geq \sum_{i=1}^{n} \frac{1}{d_{i}+1}$.

4. Do Bernoulli experiment for 20 trials, using a new 1-Yuan coin. Record the result in a string $s_{1} s_{2} \ldots s_{i} \ldots s_{20}$, where s_{i} is 1 if the $i^{t h}$ trial gets Head, and otherwise is 0 .
